東京大学 新領域創成科学研究科 複雑理工学専攻 2019年度 専門基礎科目 第1問
Author
之遥
Description
\(f(x,y)(x,y \in \mathbb{R},(x,y) \neq (0,0))\) を実関数とし,微分方程式
\[
\begin{align}
\frac{\partial ^2 f}{\partial x^2} + \frac{\partial ^2 f}{\partial y^2} + f = 0
\end{align}
\]
を極座標 \((r,\theta)(r,\theta \in \mathbb{R},r > 0)\) を用いて考える。ここで, \(x = r\cos\theta,y = r\sin\theta\) とする。\(g(r,\theta) = f(x(r,\theta),y(r,\theta))\) として, 以下の問に答えよ。
(問 1)
\(r\) を \(x,y\) を用いて表せ。
(問 2)
\(\frac{\partial f}{\partial x} = A(r,\theta)\frac{\partial g}{\partial r} + B(r,\theta)\frac{\partial g}{\partial \theta}\) と表されるとき, \(A(r,\theta),B(r,\theta)\) を求めよ。\(\frac{\partial \theta}{\partial x} = -\frac{\sin\theta}{r}\) を用いてよい。
(問 3)
\(\frac{\partial ^2 f}{\partial x^2} = D(r,\theta)\frac{\partial ^2 g}{\partial r^2} + E(r,\theta)\frac{\partial g}{\partial r} + F(r,\theta)\frac{\partial ^2 g}{\partial \theta^2} + G(r,\theta)\frac{\partial g}{\partial \theta} + H(r,\theta)\frac{\partial ^2g}{\partial r\partial \theta}\) と表されるとき, \(D(r,\theta),E(r,\theta),F(r,\theta),G(r,\theta),H(r,\theta)\) を求めよ。
(問 4)
式(1)の微分方程式において, 変数を極座標に変換して \(g(r,\theta)\) に関する微分方程式を求めよ。\(\frac{\partial \theta}{\partial y} = \frac{\cos\theta}{r}\) を用いてよい。
(問 5)
(問 4)で求めた微分方程式の解が, \(g(r,\theta) = R(r)\sin\theta\) と書けると仮定する。 \(R(r)\) は微分方程式
\[
\begin{align}
\frac{\text{d}^2R}{\text{d}r^2} + \frac{1}{r}\frac{\text{d}R}{\text{d}r} + \big(1 - \frac{1}{r^2}\big)R = 0
\end{align}
\]
を満たすことを示せ。
(問 6)
式(2)の微分方程式の解が, 項別微分可能な級数 \(R(r) = r + \sum_{m=1}^{\infty}C_{m}r^{m+1}\) と書けると仮定する。
(i) \(C_1,C_2\) の値を求めよ。
(ii) 整数 \(n \ge 1\) に対して, \(C_{n+2}\) を \(C_n\) を用いて表せ。
Kai
(問 1)
\[
r = \sqrt{x^2 + y^2}
\]
(問 2)
\[
\begin{aligned}
&\frac{\partial r}{\partial x} = \frac{2x}{2\sqrt{x^2 + y^2}} = \frac{r\cos\theta}{r} = \cos\theta \\
&\frac{\partial f(x,y)}{\partial x} = \frac{\partial f(x(r,\theta),y(r,\theta))}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial f(x(r,\theta),y(r,\theta))}{\partial \theta}\frac{\partial \theta}{\partial x} \\
&= \frac{\partial g}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial g}{\partial \theta}\frac{\partial \theta}{\partial x} = \cos\theta\frac{\partial g}{\partial r} + \big(-\frac{\sin\theta}{r}\big)\frac{\partial g}{\partial \theta} \\
&\therefore A(r,\theta) = \cos\theta,B(r,\theta) = -\frac{\sin\theta}{r}
\end{aligned}
\]
(問 3)
\[
\begin{aligned}
&\frac{\partial ^2f}{\partial x^2} = \frac{\partial }{\partial x}(\frac{\partial f}{\partial x}) = \frac{\partial }{\partial r}(\frac{\partial f}{\partial x})\cdot\frac{\partial r}{\partial x} + \frac{\partial }{\partial \theta}(\frac{\partial f}{\partial x})\cdot\frac{\partial \theta}{\partial x} \\
&= \frac{\partial }{\partial r}\bigg[\cos\theta\frac{\partial g}{\partial r} + (-\frac{\sin\theta}{r})\frac{\partial g}{\partial \theta}\bigg] \cdot \frac{\partial r}{\partial x} + \frac{\partial }{\partial \theta}\bigg[\cos\theta\frac{\partial g}{\partial r} + (-\frac{\sin\theta}{r})\frac{\partial g}{\partial \theta}\bigg] \cdot \frac{\partial \theta}{\partial x} \\
&= \bigg[\cos\theta\frac{\partial ^2g}{\partial r^2} + \frac{\sin\theta}{r^2}\frac{\partial g}{\partial \theta} + (-\frac{\sin\theta}{r})\frac{\partial ^2g}{\partial \theta\partial r}\bigg]\cos\theta \\
&\qquad + \bigg[-\sin\theta\frac{\partial g}{\partial r} + \cos\theta\frac{\partial g}{\partial r\partial \theta} + (-\frac{\cos\theta}{r})\frac{\partial g}{\partial \theta} +(-\frac{\sin\theta}{r})\frac{\partial ^2g}{\partial \theta^2}\bigg](-\frac{\sin\theta}{r}) \\
&\therefore D(r,\theta) = \cos^2\theta,E(r,\theta) = \frac{\sin^2\theta}{r} ,F(r,\theta) = \frac{\sin^2\theta}{r^2},G(r,\theta) = \frac{2\sin\theta\cos\theta}{r^2} ,\\
&\quad H(r,\theta) = - \frac{2\sin\theta\cos\theta}{r^2}
\end{aligned}
\]
(問 4)
\[
\begin{aligned}
&\frac{\partial f}{\partial y} = \frac{\partial g}{\partial r}\frac{\partial r}{\partial y} + \frac{\partial g}{\partial \theta}\frac{\partial \theta}{\partial y} = \sin\theta\frac{\partial g}{\partial r} + \frac{\cos\theta}{r}\frac{\partial g}{\partial \theta} \\
&\frac{\partial ^2f}{\partial y^2} = \bigg[\sin\theta\frac{\partial ^2g}{\partial r^2}+ (-\frac{\cos\theta}{r^2})\frac{\partial g}{\partial \theta} + \frac{\cos\theta}{r}\frac{\partial ^2g}{\partial \theta\partial r}\bigg]\sin\theta \\
&\qquad + \bigg[-\cos\theta\frac{\partial g}{\partial r} + \sin\theta\frac{\partial g}{\partial r\partial \theta} + (-\frac{\sin\theta}{r})\frac{\partial g}{\partial \theta} + \frac{\cos\theta}{r}\frac{\partial ^2g}{\partial \theta^2}\bigg]\frac{\cos\theta}{r} \\
&\text{Since }\frac{\partial ^2f}{\partial x^2} + \frac{\partial ^2f}{\partial y^2} + f = 0 \\
&\frac{\partial ^2g}{\partial r^2} + \frac{\partial g}{\partial r}\frac{1}{r} + \frac{\partial ^2g}{\partial \theta^2} \frac{1}{r^2} + g = 0
\end{aligned}
\]
(問 5)
\[
\begin{aligned}
&\frac{\partial g}{\partial r} = \frac{\text{d}R}{\text{d}r}\sin\theta,\frac{\partial ^2g}{\partial r^2} = \frac{\text{d}^2R}{\text{d}r^2}\sin\theta \\
&\frac{\partial g}{\partial \theta} = R\cos\theta,\frac{\partial ^2g}{\partial \theta^2} = -R\sin\theta \\
&\therefore \frac{\text{d}^2R}{\text{d}r^2}\sin\theta + \frac{\text{d}R}{\text{d}r}\sin\theta\frac{1}{r} + (-R\sin\theta)\frac{1}{r^2} + R\sin\theta = 0 \\
&\frac{\text{d}^2R}{\text{d}r^2} + \frac{1}{r}\frac{\text{d}R}{\text{d}r} + (1 - \frac{1}{r^2})R = 0
\end{aligned}
\]
(問 6)
(i)
\[
\begin{aligned}
&\frac{\text{d}R}{\text{d}r} = 1 + \sum_{m=1}^{\infty}(m+1)C_{m}r^{m},\frac{\text{d}^2R}{\text{d}r^2} = \sum_{m = 1}^{\infty}m(m+1)C_{m}r^{m-1} \\
&\therefore\frac{\text{d}^2R}{\text{d}r^2} + \frac{1}{r}\frac{\text{d}R}{\text{d}r} + (1 - \frac{1}{r^2})R \\
&= \sum_{m=1}^{\infty}m(m+1)C_{m}r^{m-1} + \frac{1}{r} + \sum_{m=1}^{\infty}(m+1)C_{m}r^{m-1} + r - \frac{1}{r} + \sum_{m=1}^{\infty}C_{m}r^{m+1} - \sum_{m=1}^{\infty}C_{m}r^{m-1} \\
&= r + \sum_{m=1}^{\infty}(m^2 + m + m + 1 - 1)C_{m}r^{m-1} + \sum_{m=1}^{\infty}C_{m}r^{m+1} \\
&= r + \sum_{m+1}^{\infty}(m^2 + 2m)C_{m}r^{m-1} + \sum_{m=1}^{\infty}C_{m}r^{m+1} \\
&= r + 3C_1 + 8C_2r + \sum_{m=3}^{\infty}m(m+2)C_{m}r^{m-1} + \sum_{m=1}^{\infty}C_{m}r^{m+1} \\
&= 3C_1 + (1 + 8C_2)r + \sum_{m=1}^{\infty}(m + 2)(m + 4)C_{m+2}r^{m+1} + \sum_{m=1}^{\infty}C_{m}r^{m+1} = 0 \\
\end{aligned}
\]
\[
\therefore
\left\{
\begin{aligned}
&3C_1 = 0 \\
&1 + 8C_2 = 0 \\
&(m + 2)(m + 4)C_{m+2} + C_m = 0
\end{aligned}
\right. ,
\left\{
\begin{aligned}
&C_1 = 0 \\
&C_2 = -\frac{1}{8} \\
&C_{m+2} = -\frac{C_m}{(m+2)(m+4)}
\end{aligned}
\right.
\]
(ii)
\[
C_{n+2} = -\frac{C_n}{(n+2)(n+4)}
\]