Skip to content

東京大学 新領域創成科学研究科 複雑理工学専攻 2018年度 専門基礎科目 第1問

Author

之遥

Description

関数 \(f(x,y) = (x + y)e^{-(x^2 + y^2)}\) について, 以下の問に答えよ。ただし, \(x,y\) は実数であり, \(e\) は自然対数の底とする。

(問1) \(\frac{\partial f}{\partial x}\) を求めよ。

(問2) \(\frac{\partial ^2 f}{\partial x^2}\) および \(\frac{\partial ^2f}{\partial x\partial y}\) を求めよ。

(問3) 関数 \(f\)\((x,y) = (1,-1)\) のまわりで二次の項までテイラー展開せよ。

(問4) 関数 \(f\)\((x,y) = (0.5,0.5)\) において極大値をとることを示せ。

(問5) \(x^2 + y^2 = 1 ,x,y \ge 0\) の条件下で, 関数 \(f\) の極値を求めよ。

Kai

(問1)

\[ \frac{\partial f}{\partial x} = e^{-(x^2 + y^2)} + (x + y)e^{-(x^2 + y^2)} \cdot (-2x) = (1 - 2x^2 - 2xy)e^{-(x^2 + y^2)} \]

(問2)

\[ \begin{aligned} &\frac{\partial ^2f}{\partial x^2} = (4x^3 + 4x^2y - 6x - 2y)e^{-(x^2 + y^2)} \\ &\frac{\partial ^2f}{\partial x\partial y} = (4x^2y + 4xy^2 - 2x - 2y)e^{-(x^2 + y^2)} \\ \end{aligned} \]

(問3)

\[ \begin{aligned} &\frac{\partial f}{\partial y} = (1 - 2y^2 - 2xy)e^{-(x^2 + y^2)} \\ &\frac{\partial ^2f}{\partial y^2} = (4y^3 + 4xy^2 - 6y - 2x)e^{-(x^2 + y^2)} \\ &\frac{\partial f}{\partial x}\bigg|_{(1,-1)} = e^{-2}, \frac{\partial ^2f}{\partial x^2}\bigg|_{(1,-1)} = -4e^{-2}, \frac{\partial f}{\partial y}\bigg|_{(1,-1)} = e^{-2}, \frac{\partial ^2f}{\partial y^2}\bigg|_{(1,-1)} = 4e^{-2}, \frac{\partial ^2f}{\partial x\partial y}\bigg|_{(1,-1)} = 0 \\ &f(x,y) \approx 0 + \frac{e^{-2}}{1!}(x - 1) + \frac{-4e^{-2}}{2!} + \frac{e^{-2}}{1!}(y + 1) + \frac{4e^{-2}}{2!}(y + 1)^2 + \frac{0}{1! \cdot 1!}(x - 1)(y + 1) \\ &= e^{-2}(x - 1) - 2e^{-2}(x - 1)^2 + e^{-2}(y + 1) + 2e^{-2}(y + 1)^2 \end{aligned} \]

(問4)

\[ \frac{\partial f}{\partial x}\bigg|_{(0.5,0.5)} = \frac{\partial f}{\partial y}\bigg|_{(0.5,0.5)} = 0 \]
\[ \begin{aligned} &\because \begin{vmatrix} \frac{\partial ^2f}{\partial x^2} & \frac{\partial ^2f}{\partial x\partial y} \\ \frac{\partial ^2f}{\partial x\partial y} & \frac{\partial ^2f}{\partial y^2} \end{vmatrix}_{(0.5,0.5)} = \begin{vmatrix} -3e^{-0.5} & -e^{-0.5} \\ -e^{-0.5} & -3e^{-0.5} \\ \end{vmatrix} = \frac{e}{8} > 0 ,\frac{\partial ^2f}{\partial x^2}\bigg|_{(0.5,0.5)} = -3e^{-0.5} < 0 \\ &\therefore f \text{ obtain its local maximum at point } (0.5,0.5). \end{aligned} \]

(問5)

Let \(g(x,y) = x^2 + y^2 - 1\), then we have

\[ \left\{ \begin{aligned} &\nabla f = \lambda \nabla g\\ &g = 0 \end{aligned} \right. \Rightarrow \left\{ \begin{aligned} &(1 - 2x^2 - 2xy) / e = 2\lambda x \\ &(1 - 2y^2 - 2xy) / e = 2\lambda y \\ &x^2 + y^2 = 1 \end{aligned} \right. \]

(i) When \(x = 0\),

\[ y = 1,f(0,1) = \frac{1}{e} \]

(ii) When \(y = 0\),

\[ x = 1,f(1,0) = \frac{1}{e} \]

(iii) When \(x,y \neq 0\),

\[ \left\{ \begin{aligned} &(1/x - 2x - 2y)/e = 2\lambda \\ &(1/y - 2y - 2x)/e = 2\lambda \\ &x^2 + y^2 = 1 \end{aligned} \right. \qquad x = y = \frac{\sqrt{2}}{2}\ge 0 ,f(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}) = \frac{\sqrt{2}}{e} \]

Therefore, \(f\) obtains its global minimum \(\frac{1}{e}\) at point \((0,1)\) and \((1,0)\), and obtains its global maximum \(\frac{\sqrt{2}}{e}\) at point \((\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})\)