Skip to content

東京大学 新領域創成科学研究科 メディカル情報生命専攻 2024年1月実施 問題8

Author

zephyr

Description

Suppose that the eigenvalues and the corresponding eigenvectors of an \(n \times n\) square matrix \(\mathbf{A}\) are \(\lambda_1, \dots, \lambda_n\) and \(\mathbf{\alpha}_1, \dots, \mathbf{\alpha}_n\) respectively.

Suppose that \(\mathbf{I}_n\) is the \(n \times n\) identity matrix, and the inverse matrix of an invertible matrix \(\mathbf{C}\) is \(\mathbf{C}^{-1}\).

Answer the following questions.

  1. Show all the eigenvalues and the corresponding eigenvectors of \(\mathbf{A}^2\).

  2. If \(\lambda_1, \dots, \lambda_n\) are mutually different, show that \(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\) is a diagonal matrix, using \(\mathbf{P} = (\mathbf{\alpha}_1, \dots, \mathbf{\alpha}_n)\) that is a matrix of concatenated eigenvectors.

  3. Show all the eigenvalues and the corresponding eigenvectors of \(\mathbf{B}\).

\[\mathbf{B} = \begin{pmatrix} 3 & 0 & 0 \\ -2 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}\]
  1. Suppose that \(\mu\) is the maximum eigenvalue of \(\mathbf{B}\), and \(\mathbf{\gamma} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\). Calculate \(\mathbf{\delta} = (\mathbf{B} - \mu \mathbf{I}_3)\mathbf{\gamma}\).

  2. Suppose that \(\beta\) is the eigenvector of \(\mathbf{B}\) corresponding to the minimum eigenvalue. Calculate \(\mathbf{Q}^{-1}\mathbf{B}\mathbf{Q}\) using \(\mathbf{Q} = (\mathbf{\delta}, \mathbf{\gamma}, \beta)\) that is a matrix concatenating \(\mathbf{\delta}, \mathbf{\gamma}, \beta\).

  3. Suppose that \(m\) is an arbitrary positive integer. Calculate \(\mathbf{B}^m\).


假设 \(n \times n\) 方阵 \(\mathbf{A}\) 的特征值及相应的特征向量分别为 \(\lambda_1, \dots, \lambda_n\)\(\mathbf{\alpha}_1, \dots, \mathbf{\alpha}_n\)

假设 \(\mathbf{I}_n\)\(n \times n\) 的单位矩阵,并且可逆矩阵 \(\mathbf{C}\) 的逆矩阵为 \(\mathbf{C}^{-1}\)

回答以下问题。

  1. 展示 \(\mathbf{A}^2\) 的所有特征值及相应的特征向量。

  2. 如果 \(\lambda_1, \dots, \lambda_n\) 是互不相同的,证明 \(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\) 是一个对角矩阵,其中 \(\mathbf{P} = (\mathbf{\alpha}_1, \dots, \mathbf{\alpha}_n)\) 是由特征向量构成的矩阵。

  3. 展示 \(\mathbf{B}\) 的所有特征值及相应的特征向量。

\[\mathbf{B} = \begin{pmatrix} 3 & 0 & 0 \\ -2 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}\]
  1. 假设 \(\mu\)\(\mathbf{B}\) 的最大特征值,并且 \(\mathbf{\gamma} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\)
    计算 \(\mathbf{\delta} = (\mathbf{B} - \mu \mathbf{I}_3)\mathbf{\gamma}\)

  2. 假设 \(\beta\)\(\mathbf{B}\) 对应于最小特征值的特征向量。计算 \(\mathbf{Q}^{-1}\mathbf{B}\mathbf{Q}\),其中 \(\mathbf{Q} = (\mathbf{\delta}, \mathbf{\gamma}, \beta)\) 是由 \(\mathbf{\delta}, \mathbf{\gamma}, \beta\) 构成的矩阵。

  3. 假设 \(m\) 是任意正整数。计算 \(\mathbf{B}^m\)

Kai

1. Positive Eigenvalues and Normalized Eigenvectors of \(\mathbf{A}^T \mathbf{A}\)

Given the singular value decomposition (SVD) of \(\mathbf{A}\) as \(\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T\), we can express \(\mathbf{A}^T \mathbf{A}\) as follows:

\[ \mathbf{A}^T \mathbf{A} = (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T)^T (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T) = \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T \]

The matrix \(\mathbf{\Sigma}^2\) is diagonal with the diagonal elements \(\sigma_k^2\) (\(k = 1, \ldots, r\)). Thus, the positive eigenvalues of \(\mathbf{A}^T \mathbf{A}\) are exactly the \(\sigma_k^2\), and the associated normalized eigenvectors are the columns of \(\mathbf{V}\).

2. Surjectivity and Injectivity of \(T_{\mathbf{A}}\)

Surjective (onto): The mapping \(T_{\mathbf{A}}: \mathbb{R}^m \to \mathbb{R}^n\) is surjective if the range of \(\mathbf{A}\) spans \(\mathbb{R}^n\), i.e., \(\mathbf{A}\) has full row rank. This occurs when \(r = n \leq m\).

Injective (one-to-one): The mapping \(T_{\mathbf{A}}\) is injective if the kernel of \(\mathbf{A}\) contains only the zero vector, i.e., \(\mathbf{A}\) has full column rank. This occurs when \(r = m \leq n\).

3. Image of \(T_{\mathbf{B}}\) and Kernel of \(T_{\mathbf{A}}\)

The pseudoinverse \(\mathbf{A}^+\) is defined as \(\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T\). Consider \(\mathbf{B} = \mathbf{I}_m - \mathbf{A}^+ \mathbf{A}\).

We need to show that \(\mathrm{Im}(T_{\mathbf{B}})\) is isomorphic to \(\mathrm{Ker}(T_{\mathbf{A}})\). Observe the following:

\[ \mathbf{B} \mathbf{A} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{A} = \mathbf{A} - \mathbf{A}^+ \mathbf{A} \mathbf{A} = \mathbf{A} - \mathbf{A} = \mathbf{0} \]

Thus, \(\mathrm{Im}(\mathbf{B}) \subseteq \mathrm{Ker}(\mathbf{A})\).

Now, consider \(\mathbf{x} \in \mathrm{Ker}(\mathbf{A})\). Then \(\mathbf{A} \mathbf{x} = \mathbf{0}\), and

\[ \mathbf{B} \mathbf{x} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{x} = \mathbf{x} \]

Thus, \(\mathbf{x} \in \mathrm{Im}(\mathbf{B})\). Therefore, \(\mathrm{Im}(\mathbf{B}) = \mathrm{Ker}(\mathbf{A})\).

4. Orthogonal Decomposition

Given \(\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2\) where \(\mathbf{x}_1 = \mathbf{B} \mathbf{x}\) and \(\mathbf{x}_2 = \mathbf{x} - \mathbf{x}_1\):

\[ \mathbf{x}_2 = \mathbf{x} - \mathbf{B} \mathbf{x} = \mathbf{x} - (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{x} = \mathbf{A}^+ \mathbf{A} \mathbf{x} \]

To show orthogonality:

\[ \mathbf{x}_1^T \mathbf{x}_2 = (\mathbf{B} \mathbf{x})^T (\mathbf{A}^+ \mathbf{A} \mathbf{x}) = \mathbf{x}^T \mathbf{B}^T \mathbf{A}^+ \mathbf{A} \mathbf{x} \]

Since \(\mathbf{B}\) is symmetric (\(\mathbf{B} = \mathbf{I}_m - \mathbf{A}^+ \mathbf{A}\)):

\[ \mathbf{x}^T (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{A}^+ \mathbf{A} \mathbf{x} = \mathbf{x}^T (\mathbf{A}^+ \mathbf{A} - \mathbf{A}^+ \mathbf{A}) \mathbf{x} = \mathbf{0} \]

Thus, \(\mathbf{x}_1\) and \(\mathbf{x}_2\) are orthogonal.

5. Minimizing \((\mathbf{A} \mathbf{x} - \mathbf{b})^T (\mathbf{A} \mathbf{x} - \mathbf{b})\)

Let \(\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b}\). We need to show that \(\mathbf{x} = \mathbf{x}_0\) minimizes the expression.

Consider the error:

\[ \mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{A} \mathbf{x}_0 - \mathbf{b}) \]

Since \(\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b}\), we have \(\mathbf{A} \mathbf{x}_0 = \mathbf{b}\), thus:

\[ \mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0) \]

The norm to be minimized is:

\[ (\mathbf{A} \mathbf{x} - \mathbf{b})^T (\mathbf{A} \mathbf{x} - \mathbf{b}) = (\mathbf{A} (\mathbf{x} - \mathbf{x}_0))^T (\mathbf{A} (\mathbf{x} - \mathbf{x}_0)) \]

This is minimized when \(\mathbf{x} = \mathbf{x}_0\) since \(\mathbf{A} \mathbf{x}_0 = \mathbf{b}\) and \(\mathbf{A} (\mathbf{x} - \mathbf{x}_0) = \mathbf{0}\).

Knowledge

重点词汇

  • singular value decomposition (SVD) 奇异值分解
  • pseudoinverse 广义逆
  • surjective 满射
  • injective 单射
  • orthogonal decomposition 正交分解

参考资料

  1. "Linear Algebra and Its Applications" by Gilbert Strang, Chapter 7: The Singular Value Decomposition (SVD)
  2. "Matrix Computations" by Gene H. Golub and Charles F. Van Loan, Chapter 2: Matrix Analysis