東京大学 新領域創成科学研究科 メディカル情報生命専攻 2024年1月実施 問題11
Author
Description
A quantum state of a 1-qubit quantum computer can be represented by a \(2 \times 2\) complex matrix \(\rho = \frac{1}{2} \begin{pmatrix} 1 + a & b - ic \\ b + ic & 1 - a \end{pmatrix}\) called a density matrix. Here, \(i = \sqrt{-1}\) is the imaginary unit that satisfies \(i^2 = -1\) and \(a, b, c\) are real numbers that satisfy \(a^2 + b^2 + c^2 \leq 1\). By measuring the qubit represented by matrix \(\rho\) in the computational basis (also called the Z-basis), we observe state 0 or state 1 with probabilities \(p_0 = \frac{1 + a}{2}\) and \(p_1 = \frac{1 - a}{2}\), which are the diagonal elements of matrix \(\rho\), respectively. Answer the following questions with mathematical derivation.
-
Show that all the eigenvalues of matrix \(\rho\) are non-negative real numbers.
-
Answer the probability that state 0 is observed by measurement in the computational basis after applying quantum gate operation \(H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\) to quantum state \(\rho\).
-
Answer the probability that state 0 is observed by measurement in the computational basis after applying quantum gate operation \(Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\) to quantum state \(\rho\).
-
Let \(\rho' = \frac{1}{2} \begin{pmatrix} 1 + a' & b' - ic' \\ b' + ic' & 1 - a' \end{pmatrix}\) be the quantum state after applying quantum gate operation \(U = \begin{pmatrix} u_{00}' + iu_{00}'' & u_{01}' + iu_{01}'' \\ u_{10}' + iu_{10}'' & u_{11}' + iu_{11}'' \end{pmatrix}\) to quantum state \(\rho\). Compute \(a'^2 + b'^2 + c'^2\).
1个量子比特量子计算机的量子态可以表示为一个 \(2 \times 2\) 的复数矩阵 \(\rho = \frac{1}{2} \begin{pmatrix} 1 + a & b - ic \\ b + ic & 1 - a \end{pmatrix}\),称为密度矩阵。这里,\(i = \sqrt{-1}\) 是满足 \(i^2 = -1\) 的虚数单位,\(a, b, c\) 是满足 \(a^2 + b^2 + c^2 \leq 1\) 的实数。通过在计算基(也称为Z基)中测量由矩阵 \(\rho\) 表示的量子比特,我们以概率 \(p_0 = \frac{1 + a}{2}\) 和 \(p_1 = \frac{1 - a}{2}\) 观察到状态0或状态1,分别对应密度矩阵 \(\rho\) 的对角元素。用数学推导回答以下问题。
-
证明矩阵 \(\rho\) 的所有特征值都是非负实数。
-
在对量子态 \(\rho\) 施加量子门操作 \(H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\) 后,在计算基中测量观察到状态0的概率是多少。
-
在对量子态 \(\rho\) 施加量子门操作 \(Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\) 后,在计算基中测量观察到状态0的概率是多少。
-
设 \(\rho' = \frac{1}{2} \begin{pmatrix} 1 + a' & b' - ic' \\ b' + ic' & 1 - a' \end{pmatrix}\) 是施加量子门操作 \(U = \begin{pmatrix} u_{00}' + iu_{00}'' & u_{01}' + iu_{01}'' \\ u_{10}' + iu_{10}'' & u_{11}' + iu_{11}'' \end{pmatrix}\) 后的量子态。计算 \(a'^2 + b'^2 + c'^2\)。
Kai
解题思路
这道题目涉及量子计算中的密度矩阵和量子门操作,需要运用线性代数和复数运算的知识。我们将逐步解答每个小问:
- 求密度矩阵的特征值,证明它们是非负实数。
- 计算 Hadamard 门(H 门)操作后的测量概率。
- 计算 Y 门操作后的测量概率。
- 计算一般量子门 U 操作后的密度矩阵参数。
每个小问都需要详细的数学推导。
1. Show that all the eigenvalues of matrix \(\rho\) are non-negative real numbers
To find the eigenvalues of \(\rho\), we need to solve the characteristic equation:
The solutions to this quadratic equation are:
Since \(a^2 + b^2 + c^2 \leq 1\), we have \(0 \leq \sqrt{a^2+b^2+c^2} \leq 1\). Therefore, both eigenvalues are real and non-negative.
2. Probability of observing state 0 after applying H gate
The Hadamard gate operation transforms \(\rho\) to \(H\rho H^\dagger\). Let's calculate this:
The probability of observing state 0 is the top-left element of this matrix:
3. Probability of observing state 0 after applying Y gate
Similarly, for the Y gate:
The probability of observing state 0 is:
4. Compute \(a'^2 + b'^2 + c'^2\) after applying U gate
Let \(U = \begin{pmatrix} u_{00}' + iu_{00}'' & u_{01}' + iu_{01}'' \\ u_{10}' + iu_{10}'' & u_{11}' + iu_{11}'' \end{pmatrix}\) and \(U^\dagger = \begin{pmatrix} u_{00}' - iu_{00}'' & u_{10}' - iu_{10}'' \\ u_{01}' - iu_{01}'' & u_{11}' - iu_{11}'' \end{pmatrix}\)
We need to calculate \(U\rho U^\dagger\). This is a complex calculation, so let's break it down:
Now, multiplying this by \(U^\dagger\) and focusing on the diagonal elements:
Where:
Now, we need to compute \(a'^2 + b'^2 + c'^2\). This is a very long and complex calculation. However, we can use a property of unitary matrices: \(UU^\dagger = I\). This implies that the transformation \(\rho \to U\rho U^\dagger\) preserves the trace and the purity of the density matrix.
The purity of a density matrix is defined as \(\text{Tr}(\rho^2) = \frac{1+a^2+b^2+c^2}{2}\).
Since this quantity is preserved under unitary transformations, we have:
Therefore:
This result shows that the sum of squares of the parameters in the density matrix is invariant under unitary transformations.
Knowledge
难点思路
第 4 小问的计算过程非常复杂,直接计算会非常繁琐。关键是要认识到酉变换的性质,即它保持密度矩阵的纯度不变。这样可以大大简化计算。
解题技巧和信息
- 在处理密度矩阵时,要注意其特殊性质:Hermitian(自伴)、半正定、迹为 1。
- 量子门操作可以表示为 \(U\rho U^\dagger\),其中 \(U\) 是酉矩阵。
- 酉变换保持密度矩阵的迹和纯度不变,意味着新态的 \(a'^2 + b'^2 + c'^2\) 保持不变。这是解决复杂问题的关键。
- 在计算复杂的矩阵乘法时,可以先关注最终需要的元素,而不必计算整个矩阵。
- Hadamard 门 \(H\) 将计算基的状态均匀地混合到对角线基。测量概率可以通过变换后的密度矩阵来计算。
- Pauli-Y 门 \(Y\) 交换计算基的状态并引入相位因子。
重点词汇
- density matrix 密度矩阵
- eigenvalue 特征值
- quantum gate 量子门
- Hadamard gate H 门
- unitary transformation 酉变换
- purity 纯度
- trace 迹
参考资料
- Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. Chapter 2 and 4.
- Wilde, M. M. (2017). Quantum Information Theory. Cambridge University Press. Chapter 3.