東京大学 新領域創成科学研究科 メディカル情報生命専攻 2023年8月実施 問題8
Author
Description
Answer the following questions regarding the transition matrix
,
\(0 < p < 1, 0 < q < 1, p + q \neq 1\).
(1) Show that the vector
is an eigenvector of \(\mathbf{P}\).
(2) Find the \(n\)-th order transition matrix \(\mathbf{P}^n\).
(3) Find \(\lim_{n \to \infty} \mathbf{P}^n\).
The trace of an \(n \times n\) real-valued matrix \(\mathbf{A} = (a_{ij})_{1 \leq i, j \leq n}\) is defined as \(\mathrm{tr}\, \mathbf{A} = \sum_{i=1}^{n} a_{ii}\). Answer the following questions.
(4) Prove that \(\mathrm{tr}\, \mathbf{A} = \sum_{i=1}^{n} \lambda_i\) where the eigenvalues of \(\mathbf{A}\) are described as \(\lambda_1, \dots, \lambda_n\).
(5) Prove the following: If there exists a natural number \(m\) such that \(\mathbf{A}^m = \mathbf{O}\) (\(\mathbf{O}\) is the zero matrix), then \(\mathrm{tr}\, \mathbf{A} = 0\).
回答以下关于转移矩阵
的问题,
\(0 < p < 1, 0 < q < 1, p + q \neq 1\)。
(1) 证明向量
是 \(\mathbf{P}\) 的一个特征向量。
(2) 求 \(n\) 阶转移矩阵 \(\mathbf{P}^n\)。
(3) 求 \(\lim_{n \to \infty} \mathbf{P}^n\)。
一个 \(n \times n\) 实数值矩阵 \(\mathbf{A} = (a_{ij})_{1 \leq i, j \leq n}\) 的迹定义为 \(\mathrm{tr}\, \mathbf{A} = \sum_{i=1}^{n} a_{ii}\)。回答以下问题。
(4) 证明 \(\mathrm{tr}\, \mathbf{A} = \sum_{i=1}^{n} \lambda_i\),其中 \(\mathbf{A}\) 的特征值为 \(\lambda_1, \dots, \lambda_n\)。
(5) 证明以下命题:如果存在自然数 \(m\) 使得 \(\mathbf{A}^m = \mathbf{O}\)(\(\mathbf{O}\) 是零矩阵),则 \(\mathrm{tr}\, \mathbf{A} = 0\)。
Kai
Written by zephyr
解题思路
这道题目涉及马尔可夫链的转移矩阵、特征向量、矩阵幂运算、极限计算以及矩阵迹的性质。我们需要运用线性代数的知识来分析转移矩阵的特征值和特征向量,利用这些来计算矩阵的幂和极限。最后,我们还需要证明关于矩阵迹的一些性质。
Solution
1. Eigenvector Proof
To show that \(\begin{pmatrix} p \\ -q \end{pmatrix}\) is an eigenvector of \(\mathbf{P}\), we need to find a scalar \(\lambda\) such that \(\mathbf{P}\begin{pmatrix} p \\ -q \end{pmatrix} = \lambda\begin{pmatrix} p \\ -q \end{pmatrix}\).
Let's compute:
Therefore, \(\begin{pmatrix} p \\ -q \end{pmatrix}\) is indeed an eigenvector of \(\mathbf{P}\) with eigenvalue \(\lambda = 1 - p - q\).
2. n-th Order Transition Matrix
To find \(\mathbf{P}^n\), we'll use the eigen-decomposition of \(\mathbf{P}\). We already found one eigenpair. Let's find the other:
The characteristic equation is: \(\det(\mathbf{P} - \lambda\mathbf{I}) = (1-p-\lambda)(1-q-\lambda) - pq = 0\)
Solving this, we get: \(\lambda_1 = 1\) and \(\lambda_2 = 1 - p - q\)
The eigenvector corresponding to \(\lambda_1 = 1\) is \(\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}\)
Now we can write \(\mathbf{P} = \mathbf{S}\mathbf{\Lambda}\mathbf{S}^{-1}\), where:
Therefore,
3. Limit of \(\mathbf{P}^n\) as \(n \to \infty\)
As \(n \to \infty\), \((1-p-q)^n \to 0\) since \(|1-p-q| < 1\). Therefore,
4. Proof of \(\mathrm{tr}\, \mathbf{A} = \sum_{i=1}^{n} \lambda_i\)
Let \(\mathbf{A}\) be diagonalizable (if not, we can use the Jordan canonical form). Then \(\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}\), where \(\mathbf{D}\) is a diagonal matrix with eigenvalues on the diagonal.
5. Proof: If \(\mathbf{A}^m = \mathbf{O}\), then \(\mathrm{tr}\, \mathbf{A} = 0\)
We will prove this statement using the following steps:
1) Let \(\lambda_1, \lambda_2, ..., \lambda_n\) be the eigenvalues of \(\mathbf{A}\) (including algebraic multiplicities).
2) From the condition \(\mathbf{A}^m = \mathbf{O}\), we know that \(\mathbf{A}\) is nilpotent. For a nilpotent matrix, all its eigenvalues are zero. We can prove this as follows:
If \(\lambda\) is an eigenvalue of \(\mathbf{A}\), then \(\lambda^m\) is an eigenvalue of \(\mathbf{A}^m\). Since \(\mathbf{A}^m = \mathbf{O}\), all eigenvalues of \(\mathbf{A}^m\) must be zero. Therefore, \(\lambda^m = 0\), which implies \(\lambda = 0\).
3) From the result in part 4, we know that \(\mathrm{tr}\, \mathbf{A} = \sum_{i=1}^{n} \lambda_i\).
4) Since all eigenvalues of \(\mathbf{A}\) are zero, we have:
\(\mathrm{tr}\, \mathbf{A} = \sum_{i=1}^{n} \lambda_i = 0 + 0 + ... + 0 = 0\)
Therefore, we have proved that if \(\mathbf{A}^m = \mathbf{O}\), then \(\mathrm{tr}\, \mathbf{A} = 0\).
Knowledge
难点思路
本题的难点在于第2问和第3问,需要利用矩阵的特征分解来计算矩阵的幂。关键是要认识到可以用特征值和特征向量将矩阵对角化,从而简化矩阵幂的计算。另外,在计算矩阵的逆时要特别注意,因为这里很容易出错。
解题技巧和信息
- 在处理马尔可夫链问题时,注意转移矩阵的特征值总有一个是1。
- 计算矩阵的高次幂时,考虑使用特征分解方法。
- 在证明矩阵性质时,考虑使用特征值的性质。
- 矩阵迹的性质在很多证明中都很有用,要熟练掌握。
- 在进行矩阵运算时,要仔细检查每一步,特别是在计算逆矩阵时。
重点词汇
- Markov chain 马尔可夫链
- transition matrix 转移矩阵
- eigenvalue 特征值
- eigenvector 特征向量
- matrix diagonalization 矩阵对角化
- trace of a matrix 矩阵的迹
- characteristic equation 特征方程
- steady state 稳态
参考资料
- Strang, Gilbert. "Linear Algebra and Its Applications." Chapter 5: Eigenvalues and Eigenvectors.
- Ross, Sheldon M. "Introduction to Probability Models." Chapter 4: Markov Chains.
- Horn, Roger A., and Charles R. Johnson. "Matrix analysis." Chapter 1: Eigenvalues, Eigenvectors, and Similarity.