東京大学 新領域創成科学研究科 メディカル情報生命専攻 2023年8月実施 問題11
Author
Description
Let \(X_i\) \((i = 1, \dots, n; n \geq 2)\) be \(n\) independent nonnegative real-valued random variables with the same probability density function \(f(x) = e^{-x}\). Answer the following questions with mathematical derivation.
(1) Compute the mean and variance of \(X_i\).
(2) Suppose the value of \(X_i\) is given as \(x_i\) for some \(i\). Compute probability \(\mathbb{P}(X_i \leq X_k \mid X_i = x_i)\) that \(X_i\) is less than or equal to \(X_k\) for a given index \(k\) with \(k \neq i\).
(3) Compute probability \(\mathbb{P}(X_i \leq X_k)\) by multiplying the probability of (2) by \(f(x_i)\) and integrating it with respect to \(x_i\).
(4) Let \(X_{\min} = \min_{k=1,\dots,n} X_k\) be the minimum value of set \(\{ X_i \mid i = 1, \dots, n \}\). Compute the probability \(\mathbb{P}(x \leq X_{\min})\) that \(X_{\min}\) is greater than or equal to \(x\) for a given positive real number \(x\).
For \(n\) given positive real numbers \(\lambda_i\) \((i = 1, \dots, n)\), define random variables \(Z_i\) \((i = 1, \dots, n)\) as \(Z_i = \frac{X_i}{\lambda_i}\).
(5) Suppose the value of \(X_i\) is given as \(x_i\) for some \(i\). Compute probability \(\mathbb{P}(Z_i \leq Z_k \mid X_i = x_i)\) that \(Z_i\) is less than or equal to \(Z_k\) for a given index \(k\) with \(k \neq i\).
(6) Suppose the value of \(X_i\) is given as \(x_i\) for some \(i\). Compute probability \(\mathbb{P}\left(\bigcap_{k=1,\dots,n; k \neq i} \{ Z_i \leq Z_k \} \mid X_i = x_i\right)\) that \(Z_i\) is less than or equal to \(Z_k\) for all the indices \(k\) with \(k \neq i\).
(7) Let \(Z_I\) be a minimum element in set \(\{ Z_i \mid i = 1, \dots, n \}\). Answer the probability distribution \(\mathbb{P}(I = i)\) \((i = 1, \dots, n)\) of index \(I = \mathop{\arg\min}\limits_{k=1,\dots,n} Z_k\).
设 \(X_i\) \((i = 1, \dots, n; n \geq 2)\) 是 \(n\) 个独立的非负实值随机变量,其概率密度函数为 \(f(x) = e^{-x}\)。请用数学推导回答以下问题。
(1) 计算 \(X_i\) 的均值和方差。
(2) 假设 \(X_i\) 的值为 \(x_i\),计算 \(\mathbb{P}(X_i \leq X_k \mid X_i = x_i)\) 的概率,即 \(X_i\) 小于或等于 \(X_k\) 的概率,其中 \(k \neq i\)。
(3) 计算 \(\mathbb{P}(X_i \leq X_k)\) 的概率,通过 (2) 的概率乘以 \(f(x_i)\) 并对 \(x_i\) 积分。
(4) 令 \(X_{\min} = \min_{k=1,\dots,n} X_k\) 为集合 \(\{ X_i \mid i = 1, \dots, n \}\) 的最小值。计算 \(\mathbb{P}(x \leq X_{\min})\) 的概率,即 \(X_{\min}\) 大于或等于给定正实数 \(x\) 的概率。
对于 \(n\) 个给定的正实数 \(\lambda_i\) \((i = 1, \dots, n)\),定义随机变量 \(Z_i\) \((i = 1, \dots, n)\) 为 \(Z_i = \frac{X_i}{\lambda_i}\)。
(5) 假设 \(X_i\) 的值为 \(x_i\),计算 \(\mathbb{P}(Z_i \leq Z_k \mid X_i = x_i)\) 的概率,即 \(Z_i\) 小于或等于 \(Z_k\) 的概率,其中 \(k \neq i\)。
(6) 假设 \(X_i\) 的值为 \(x_i\),计算 \(\mathbb{P}\left(\bigcap_{k=1,\dots,n; k \neq i} \{ Z_i \leq Z_k \} \mid X_i = x_i\right)\) 的概率,即 \(Z_i\) 小于或等于 \(Z_k\) 的概率,对于所有 \(k \neq i\)。
(7) 令 \(Z_I\) 为集合 \(\{ Z_i \mid i = 1, \dots, n \}\) 中的最小元素。回答索引 \(I = \mathop{\arg\min}\limits_{k=1,\dots,n} Z_k\) 的概率分布 \(\mathbb{P}(I = i)\) \((i = 1, \dots, n)\)。
Kai
Written by zephyr
题目背景
令 \(X_i\) \((i = 1, \dots, n; n \geq 2)\) 为 \(n\) 个独立的非负实值随机变量,它们具有相同的概率密度函数 \(f(x) = e^{-x}\)。
1. Compute the mean and variance of \(X_i\)
For the exponential distribution \(f(x) = e^{-x}\), we can calculate the mean and variance as follows:
Mean
Variance
Therefore, \(E[X_i] = 1\) and \(Var(X_i) = 1\).
2. Compute probability \(\mathbb{P}(X_i \leq X_k \mid X_i = x_i)\)
Given \(X_i = x_i\), the distribution of \(X_k\) remains \(f(x) = e^{-x}\). Thus:
3. Compute probability \(\mathbb{P}(X_i \leq X_k)\)
We need to integrate over \(x_i\):
4. Compute probability \(\mathbb{P}(x \leq X_{\min})\)
The probability that \(X_{\min}\) is greater than or equal to \(x\) is equal to the probability that all \(X_i\) are greater than or equal to \(x\):
5. Compute probability \(\mathbb{P}(Z_i \leq Z_k \mid X_i = x_i)\)
Given \(X_i = x_i\), we have:
6. Compute probability \(\mathbb{P}\left(\bigcap_{k=1,\dots,n; k \neq i} \{ Z_i \leq Z_k \} \mid X_i = x_i\right)\)
This probability is the product of all \(\mathbb{P}(Z_i \leq Z_k \mid X_i = x_i)\) for \(k \neq i\):
7. Compute the probability distribution \(\mathbb{P}(I = i)\)
To calculate \(\mathbb{P}(I = i)\), we need to integrate over \(x_i\):
Therefore, \(\mathbb{P}(I = i) = \frac{\lambda_i}{\sum_{k=1}^n \lambda_k}\).
Knowledge
难点思路
这道题的难点在于处理条件概率和多个随机变量的最小值。特别是在第 6 和第 7 问中,需要仔细处理多个条件的交集概率。
解题技巧和信息
- 对于指数分布,要熟悉其基本性质,如均值、方差、累积分布函数等。
- 在处理多个独立随机变量时,要善于利用独立性质简化计算。
- 在计算条件概率时,要清楚地区分给定条件下的随机变量和非随机变量。
- 在处理最小值问题时,可以转化为所有变量都大于某个值的概率。
- 在积分计算中,要善于使用指数函数的性质,如 \(\int e^{ax} dx = \frac{1}{a}e^{ax} + C\)。
重点词汇
- Probability density function: 概率密度函数
- Exponential distribution: 指数分布
- Conditional probability: 条件概率
- Minimum value: 最小值
- Order statistics: 顺序统计量
- Independent random variables: 独立随机变量