東京大学 新領域創成科学研究科 メディカル情報生命専攻 2022年8月実施 問題8
Author
Description
(1) Describe the eigenvalues and eigenvectors of the following matrix. (\(\lambda\) is a real value.)
(2) What is the range of \(\lambda\) such that \(\mathbf{A}_\lambda\) is positive semidefinite.
(3) Consider an \(n \times n\) symmetric matrix where all diagonal elements are \(b\) and all non-diagonal elements are \(a\). Show that this matrix is non-singular when \(|b| > |(n - 1)a|\).
Kai
(1) Eigenvalues and Eigenvectors
To find the eigenvalues \(\mu_i\) of the matrix \(\mathbf{A}_\lambda\), we need to solve the characteristic equation \(\det(\mathbf{A}_\lambda - \mu \mathbf{I}) = 0\).
Using the row addition method for simplification, we can add all rows to the first row:
Now, we can absorb the common factor \((\lambda - \mu + 2)\) from the first row:
Setting the determinant to zero:
So, the eigenvalues are:
Eigenvectors
For \(\mu_1 = \lambda + 2\):
Solving
, we find:
$$ \mathbf{v}_1 = \begin{pmatrix}
1 \
1 \
1
\end{pmatrix} $$
For \(\mu_2 = \lambda - 1\):
$$ \mathbf{A}_\lambda - (\lambda - 1) \mathbf{I} = \begin{pmatrix}
1 & 1 & 1 \
1 & 1 & 1 \
1 & 1 & 1
\end{pmatrix} $$
We need to solve \(\mathbf{A}_\lambda \mathbf{v} = (\lambda - 1)\mathbf{v}\), which gives the eigenvectors corresponding to \(\mu_2\). This generally results in two linearly independent eigenvectors orthogonal to \(\mathbf{v}_1\):
$$ \mathbf{v}_2 = \begin{pmatrix}
1 \
0 \
-1
\end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix}
0 \
1 \
-1
\end{pmatrix} $$
(2) Positive Semi-definiteness
A matrix is positive semidefinite if all its eigenvalues are non-negative. For \(\mathbf{A}_\lambda\) to be positive semidefinite:
Solving these inequalities:
The most restrictive condition is \(\lambda \geq 1\).
Thus, the range of \(\lambda\) such that \(\mathbf{A}_\lambda\) is positive semidefinite is:
(3) Non-Singularity of Symmetric Matrix
Consider an \(n \times n\) symmetric matrix \(\mathbf{B}\) where all diagonal elements are \(b\) and all non-diagonal elements are \(a\).
$$ \mathbf{B} = \begin{pmatrix}
b & a & a & \cdots & a \
a & b & a & \cdots & a \
a & a & b & \cdots & a \
\vdots & \vdots & \vdots & \ddots & \vdots \
a & a & a & \cdots & b
\end{pmatrix} $$
The matrix \(\mathbf{B}\) can be written as:
where \(\mathbf{J}\) is the \(n \times n\) matrix with all elements equal to 1.
The eigenvalues of \(\mathbf{J}\) are \(n\) (with multiplicity 1) and \(0\) (with multiplicity \(n-1\)). Thus, the eigenvalues of \(\mathbf{B}\) are:
The matrix \(\mathbf{B}\) is non-singular if all its eigenvalues are non-zero:
This holds if:
since \(|b| > (n-1)|a|\) implies \(|b| > |a|\) when \(n \geq 2\).
Thus, the matrix \(\mathbf{B}\) is non-singular when \(|b| > |(n-1)a|\).
Knowledge
特征值和特征向量 正定矩阵
难点解题思路
- 通过求解特征方程来找到特征值。
- 根据特征值的符号判断矩阵的半正定性。
- 使用矩阵特征值的性质判断矩阵的非奇异性。
解题技巧和信息
- 计算特征方程时,使用行列式和代数余子式。
- 确定半正定矩阵时,所有特征值必须为非负数。
- 判断矩阵是否非奇异,可以通过特征值是否全非零来实现。
重点词汇
eigenvalue 特征值
eigenvector 特征向量
positive semidefinite 正半定
non-singular 非奇异
参考资料
- Linear Algebra and Its Applications by Gilbert Strang, Chap. 6
- Introduction to Linear Algebra by Gilbert Strang, Chap. 7