Skip to content

東京大学 新領域創成科学研究科 メディカル情報生命専攻 2018年8月実施 問題8

Author

zephyr

Description

If an \(n \times n\) real symmetric matrix \(\mathbf{A}\) satisfies condition \(\mathbf{v}^T \mathbf{A} \mathbf{v} > 0\) for any non-zero \(n\)-dimensional real column vector \(\mathbf{v}\), \(\mathbf{A}\) is called a positive definite matrix (\(\mathbf{v}^T\) represents the transpose of \(\mathbf{v}\)). Answer the following questions.

(1) Show the diagonal elements \(A_{kk} \ (k = 1, \ldots, n)\) of real positive definite matrix \(\mathbf{A}\) are positive.

(2) Show the eigenvalues of real symmetric matrix \(\mathbf{A}\) are real.

(3) Show the eigenvalues of positive definite matrix \(\mathbf{A}\) are positive.

(4) Let \(S = \{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v}^T \mathbf{v} = 1 \}\) be the set of non-zero \(n\)-dimensional real column vectors \(\mathbf{v}\) of unit length. Show \(\lambda_1 = \max_{\mathbf{v} \in S} \mathbf{v}^T \mathbf{A} \mathbf{v}\) is the largest eigenvalue of positive definite matrix \(\mathbf{A}\).

(5) Suppose the eigenvectors of positive definite matrix \(\mathbf{A}\) are all different. Furthermore, suppose you know the largest eigenvalue \(\lambda_1\) and its associated eigenvector \(\mathbf{v}_1\). Explain how to compute the second largest eigenvalue \(\lambda_2\) using \(\lambda_1\) and \(\mathbf{v}_1\) without computing the third largest or smaller eigenvalues.


如果一个 \(n \times n\) 实对称矩阵 \(\mathbf{A}\) 满足对于任意非零 \(n\) 维实列向量 \(\mathbf{v}\),有 \(\mathbf{v}^T \mathbf{A} \mathbf{v} > 0\),则称 \(\mathbf{A}\) 为正定矩阵 (\(\mathbf{v}^T\) 表示 \(\mathbf{v}\) 的转置)。回答以下问题。

(1) 证明实正定矩阵 \(\mathbf{A}\) 的对角元素 \(A_{kk} \ (k = 1, \ldots, n)\) 是正的。

(2) 证明实对称矩阵 \(\mathbf{A}\) 的特征值是实数。

(3) 证明正定矩阵 \(\mathbf{A}\) 的特征值是正的。

(4) 设 \(S = \{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v}^T \mathbf{v} = 1 \}\) 为非零 \(n\) 维实列向量 \(\mathbf{v}\) 的单位长度集合。证明 \(\lambda_1 = \max_{\mathbf{v} \in S} \mathbf{v}^T \mathbf{A} \mathbf{v}\) 是正定矩阵 \(\mathbf{A}\) 的最大特征值。

(5) 假设正定矩阵 \(\mathbf{A}\) 的特征向量都不相同。此外,假设你知道最大特征值 \(\lambda_1\) 及其关联的特征向量 \(\mathbf{v}_1\)。解释如何在不计算第三大或更小的特征值的情况下,使用 \(\lambda_1\)\(\mathbf{v}_1\) 计算第二大特征值 \(\lambda_2\)

Kai

(1)

Consider the standard basis vector \(\mathbf{e}_k\) where the \(k\)-th element is 1 and all other elements are 0. Then,

\[ \mathbf{e}_k^T \mathbf{A} \mathbf{e}_k = A_{kk}. \]

Since \(\mathbf{A}\) is positive definite, we have:

\[ \mathbf{e}_k^T \mathbf{A} \mathbf{e}_k > 0. \]

Thus,

\[ A_{kk} > 0. \]

(2)

For a real symmetric matrix \(\mathbf{A}\), consider its eigenvalue equation:

\[ \mathbf{A} \mathbf{x} = \lambda \mathbf{x}, \]

where \(\mathbf{x}\) is an eigenvector and \(\lambda\) is the corresponding eigenvalue. Since \(\mathbf{A}\) is symmetric, we have:

\[ \mathbf{x}^T \mathbf{A} \mathbf{y} = \mathbf{y}^T \mathbf{A} \mathbf{x} \]

for any vectors \(\mathbf{x}\) and \(\mathbf{y}\). Setting \(\mathbf{y} = \mathbf{x}\), we get:

\[ \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T (\lambda \mathbf{x}) = \lambda (\mathbf{x}^T \mathbf{x}). \]

Since \(\mathbf{x}^T \mathbf{x} > 0\) (as \(\mathbf{x} \neq 0\)), \(\lambda\) must be real.

(3)

Let \(\mathbf{A}\) be a positive definite matrix and \(\lambda\) be an eigenvalue with corresponding eigenvector \(\mathbf{x}\):

\[ \mathbf{A} \mathbf{x} = \lambda \mathbf{x}. \]

Taking the transpose of \(\mathbf{x}\), we have:

\[ \mathbf{x}^T \mathbf{A} \mathbf{x} = \lambda \mathbf{x}^T \mathbf{x}. \]

Since \(\mathbf{A}\) is positive definite, \(\mathbf{x}^T \mathbf{A} \mathbf{x} > 0\) and \(\mathbf{x}^T \mathbf{x} > 0\). Thus,

\[ \lambda > 0. \]

(4)

Definitions and Setup

  • Let \(\mathbf{A}\) be an \(n \times n\) real symmetric positive definite matrix.
  • The set \(S = \{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v}^T \mathbf{v} = 1 \}\) represents the set of unit vectors in \(\mathbb{R}^n\).
  • We aim to show that the maximum value of the quadratic form \(\mathbf{v}^T \mathbf{A} \mathbf{v}\) over the set \(S\) is the largest eigenvalue \(\lambda_1\) of \(\mathbf{A}\).

Step-by-Step Proof

  1. Spectral Theorem Application: Since \(\mathbf{A}\) is a real symmetric matrix, by the spectral theorem, it can be diagonalized as:
\[ \mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T, \]

where \(\mathbf{Q}\) is an orthogonal matrix (i.e., \(\mathbf{Q}^T = \mathbf{Q}^{-1}\)) and \(\mathbf{\Lambda}\) is a diagonal matrix containing the eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n\) of \(\mathbf{A}\), with \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0\) since \(\mathbf{A}\) is positive definite.

  1. Quadratic Form Transformation: For any unit vector \(\mathbf{v} \in \mathbb{R}^n\) (i.e., \(\mathbf{v} \in S\)), we can express \(\mathbf{v}\) in terms of the orthonormal basis formed by the columns of \(\mathbf{Q}\):

$$ \mathbf{v} = \mathbf{Q} \mathbf{y},

$$

where \(\mathbf{y}\) is a unit vector (\(\mathbf{y}^T \mathbf{y} = 1\)) in \(\mathbb{R}^n\). Substituting this into the quadratic form gives:

\[ \mathbf{v}^T \mathbf{A} \mathbf{v} = (\mathbf{Q} \mathbf{y})^T \mathbf{A} (\mathbf{Q} \mathbf{y}) = \mathbf{y}^T \mathbf{Q}^T \mathbf{A} \mathbf{Q} \mathbf{y} = \mathbf{y}^T \mathbf{\Lambda} \mathbf{y}. \]
  1. Maximization over Unit Vectors: The expression \(\mathbf{y}^T \mathbf{\Lambda} \mathbf{y}\) can be written as:
\[ \mathbf{y}^T \mathbf{\Lambda} \mathbf{y} = \sum_{i=1}^n \lambda_i y_i^2, \]

where \(y_i\) are the components of the vector \(\mathbf{y}\). Given that \(\sum_{i=1}^n y_i^2 = 1\) (since \(\mathbf{y}\) is a unit vector), we need to maximize the weighted sum of the eigenvalues with respect to \(y_i^2\).

  1. Eigenvalue Maximization:

To maximize \(\sum_{i=1}^n \lambda_i y_i^2\), note that the maximum value occurs when \(y_1^2 = 1\) and \(y_2^2 = y_3^2 = \cdots = y_n^2 = 0\) (because \(\lambda_1\) is the largest eigenvalue). Hence,

\[ \max_{\mathbf{y}^T \mathbf{y} = 1} \sum_{i=1}^n \lambda_i y_i^2 = \lambda_1. \]

Therefore,

\[ \max_{\mathbf{v} \in S} \mathbf{v}^T \mathbf{A} \mathbf{v} = \lambda_1. \]
  1. Conclusion: The maximum value of the quadratic form \(\mathbf{v}^T \mathbf{A} \mathbf{v}\) over the unit sphere \(S\) is indeed the largest eigenvalue \(\lambda_1\) of the positive definite matrix \(\mathbf{A}\).

(5)

Given:

  • \(\mathbf{A}\) is a positive definite matrix.
  • \(\mathbf{A}\) has distinct eigenvalues \(\lambda_1 > \lambda_2 > \cdots > \lambda_n > 0\).
  • The largest eigenvalue \(\lambda_1\) and its associated eigenvector \(\mathbf{v}_1\) are known.

We aim to find the second largest eigenvalue \(\lambda_2\) using \(\lambda_1\) and \(\mathbf{v}_1\).

Orthogonal Projection Method

  1. Orthogonality of Eigenvectors: Since \(\mathbf{A}\) is symmetric, its eigenvectors corresponding to distinct eigenvalues are orthogonal. Thus, \(\mathbf{v}_1\) is orthogonal to all other eigenvectors of \(\mathbf{A}\).

  2. Defining the Subspace Orthogonal to \(\mathbf{v}_1\): Let \(S_1\) be the subspace of \(\mathbb{R}^n\) consisting of vectors orthogonal to \(\mathbf{v}_1\):

\[ S_1 = \{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v}^T \mathbf{v}_1 = 0 \}. \]
  1. Rayleigh Quotient in the Subspace: The Rayleigh quotient \(R(\mathbf{v})\) for a vector \(\mathbf{v}\) is given by:
\[ R(\mathbf{v}) = \frac{\mathbf{v}^T \mathbf{A} \mathbf{v}}{\mathbf{v}^T \mathbf{v}}. \]

We need to maximize this quotient over the subspace \(S_1\).

  1. Projection Method: To find \(\lambda_2\), we consider the effect of \(\mathbf{v}_1\) and deflate \(\mathbf{A}\) by projecting it onto the subspace orthogonal to \(\mathbf{v}_1\).

Define the matrix \(\mathbf{A}'\) as:

\[ \mathbf{A}' = \mathbf{A} - \lambda_1 \mathbf{v}_1 \mathbf{v}_1^T. \]

This matrix \(\mathbf{A}'\) removes the influence of \(\lambda_1\) and \(\mathbf{v}_1\). The matrix \(\mathbf{A}'\) still has the same eigenvectors as \(\mathbf{A}\), but the eigenvalue \(\lambda_1\) associated with \(\mathbf{v}_1\) is replaced with 0.

  1. Finding \(\lambda_2\): The second largest eigenvalue \(\lambda_2\) of \(\mathbf{A}\) will be the largest eigenvalue of \(\mathbf{A}'\) in the subspace orthogonal to \(\mathbf{v}_1\).

To find \(\lambda_2\), consider any vector \(\mathbf{u}\) in \(S_1\):

\[ \mathbf{u} = \mathbf{v} - (\mathbf{v}^T \mathbf{v}_1) \mathbf{v}_1. \]

Here, \(\mathbf{u}\) is the projection of \(\mathbf{v}\) onto the subspace orthogonal to \(\mathbf{v}_1\). Since \(\mathbf{v}\) is in \(S_1\), \(\mathbf{u} = \mathbf{v}\).

  1. Maximizing the Rayleigh Quotient: The Rayleigh quotient in the subspace \(S_1\) for the matrix \(\mathbf{A}'\) becomes:
\[ R'(\mathbf{v}) = \frac{\mathbf{v}^T \mathbf{A}' \mathbf{v}}{\mathbf{v}^T \mathbf{v}} = \frac{\mathbf{v}^T (\mathbf{A} - \lambda_1 \mathbf{v}_1 \mathbf{v}_1^T) \mathbf{v}}{\mathbf{v}^T \mathbf{v}}. \]

Since \(\mathbf{v} \perp \mathbf{v}_1\), we have \(\mathbf{v}^T \mathbf{v}_1 = 0\), and thus:

\[ R'(\mathbf{v}) = \frac{\mathbf{v}^T \mathbf{A} \mathbf{v}}{\mathbf{v}^T \mathbf{v}}. \]

Therefore, the maximum value of \(R'(\mathbf{v})\) in the subspace \(S_1\) gives \(\lambda_2\):

\[ \lambda_2 = \max_{\mathbf{v} \in S_1} \frac{\mathbf{v}^T \mathbf{A} \mathbf{v}}{\mathbf{v}^T \mathbf{v}}. \]
  1. Conclusion: By maximizing the Rayleigh quotient in the subspace orthogonal to the eigenvector \(\mathbf{v}_1\) associated with \(\lambda_1\), we find the second largest eigenvalue \(\lambda_2\).

Knowledge

正定矩阵 特征值和特征向量 Rayleigh商 正交性

难点思路

计算次大特征值的过程可能是一个难点,尤其是如何正确地使用正交性和 Rayleigh 商。

解题技巧和信息

  • 正定矩阵的定义和性质非常重要,尤其是对特征值的影响。
  • 计算特征值时,Rayleigh 商是一个有效工具。
  • 正交性在分解和简化问题中非常有用。

重点词汇

  • Positive definite matrix 正定矩阵
  • Eigenvalue 特征值
  • Eigenvector 特征向量
  • Rayleigh quotient Rayleigh 商
  • Orthogonal 正交的

参考资料

  1. Linear Algebra and Its Applications by Gilbert Strang, Chapter 6.
  2. Introduction to Linear Algebra by Gilbert Strang, Chapter 7.