東京大学 新領域創成科学研究科 メディカル情報生命専攻 2017年8月実施 問題11
Author
Description
Assume that the distributions of real-valued mutually independent random variables \(\mathbf{X_1}, \ldots, \mathbf{X_n}\) are identical and denoted as \(F(x)\).
Denote by \(\mathbf{X_{(1)}}, \ldots, \mathbf{X_{(n)}}\) the random variables obtained by arranging \(\mathbf{X_1}, \ldots, \mathbf{X_n}\) in ascending order. Answer the following questions.
(1) Find the distribution function of \(\mathbf{X_{(1)}}\).
(2) Find the distribution function of \(\mathbf{X_{(n)}}\).
(3) Find the distribution function of \(\mathbf{X_{(k)}}\) for any \(k\).
(4) Find the expectation of \(\mathbf{X_{(1)}}\) when \(F(x)\) is the uniform distribution over \([0,1]\).
假设实值相互独立随机变量 \(\mathbf{X_1}, \ldots, \mathbf{X_n}\) 的分布是相同的,并记为 \(F(x)\)。
记 \(\mathbf{X_{(1)}}, \ldots, \mathbf{X_{(n)}}\) 为将 \(\mathbf{X_1}, \ldots, \mathbf{X_n}\) 按升序排列后得到的随机变量。回答以下问题。
(1) 找到 \(\mathbf{X_{(1)}}\) 的分布函数。
(2) 找到 \(\mathbf{X_{(n)}}\) 的分布函数。
(3) 找到任意 \(k\) 的 \(\mathbf{X_{(k)}}\) 的分布函数。
(4) 当 \(F(x)\) 为 \([0,1]\) 上的均匀分布时,找到 \(\mathbf{X_{(1)}}\) 的期望。
Kai
(1)
To find the distribution function of the smallest order statistic \(\mathbf{X_{(1)}}\), we consider:
Since \(\mathbf{X_{(1)}}\) is the smallest of the \(\mathbf{X_1}, \ldots, \mathbf{X_n}\), \(\mathbf{X_{(1)}} \gt x\) means that all \(\mathbf{X_i} \gt x\). Thus:
We know that \(\mathbf{X_{(1)}} > x\) if and only if all \(\mathbf{X_i} > x\), so:
Thus, the distribution function of \(\mathbf{X_{(1)}}\) is:
(2)
To find the distribution function of the largest order statistic \(\mathbf{X_{(n)}}\), we consider:
Since \(\mathbf{X_{(n)}}\) is the largest of the \(\mathbf{X_1}, \ldots, \mathbf{X_n}\), \(\mathbf{X_{(n)}} \leq x\) means that at least one \(\mathbf{X_i} \leq x\). Thus:
(3)
To find the distribution function of the \(k\)-th order statistic \(\mathbf{X_{(k)}}\), we need to determine the probability \(F_{\mathbf{X_{(k)}}}(x) = P(\mathbf{X_{(k)}} \leq x)\). This represents the probability that the \(k\)-th smallest value among \(\mathbf{X_1}, \ldots, \mathbf{X_n}\) is less than or equal to \(x\).
Step 1: Basic Concepts and Binomial Probability
Since \(\mathbf{X_i}\) are independent and identically distributed, the probability that any particular \(\mathbf{X_i}\) is less than or equal to \(x\) is \(F(x)\). Similarly, the probability that \(\mathbf{X_i}\) is greater than \(x\) is \(1 - F(x)\).
Step 2: Using Binomial Distribution
We can think of this as a binomial distribution problem. We need to consider the event that at least \(k\) out of \(n\) \(\mathbf{X_i}\) values are less than or equal to \(x\). Mathematically, this can be expressed as:
Here, \(\binom{n}{j}\) is the binomial coefficient, representing the number of ways to choose \(j\) successes (values \(\leq x\)) out of \(n\) trials.
(4)
If \(F(x)\) is the uniform distribution over \([0,1]\), then \(F(x) = x\) for \(x \in [0,1]\). Therefore:
The expectation of \(\mathbf{X_{(1)}}\) is given by:
where \(f_{\mathbf{X_{(1)}}}(x)\) is the derivative of \(F_{\mathbf{X_{(1)}}}(x)\):
Therefore:
This is a Beta distribution integral:
Using the Beta function property, we get:
Thus:
Knowledge
顺序统计量 概率分布函数 期望值 Beta分布
难点思路
第 (3) 小问关于任意 \(k\) 阶顺序统计量的分布函数需要理解 Binomial 分布的性质并进行累加,这是一个较难点。
解题技巧和信息
对于顺序统计量,了解如何通过分布函数 \(F(x)\) 来表示最小和最大顺序统计量的分布函数非常重要。对于均匀分布的情况,可以利用 Beta 分布性质简化期望值计算。
重点词汇
- order statistic 顺序统计量
- distribution function 分布函数
- expectation 期望值
- uniform distribution 均匀分布
参考资料
- "Probability and Statistics" by Morris H. DeGroot and Mark J. Schervish, Chapter 5.
- "A First Course in Probability" by Sheldon Ross, Chapter 8.