東京大学 新領域創成科学研究科 メディカル情報生命専攻 2014年8月実施 問題11
Author
Description
For an arbitrary random variable \(X\) that takes values in non-negative integers, we define the probability generating function \(\varphi_X(s)\) of \(X\) as \(\varphi_X(s) = E\{s^X\} = \sum_{k=0}^{\infty} s^k \Pr\{X = k\}\). Here, \(E\{A\}\) denotes the expected value of \(A\), \(\Pr\{X = k\}\) denotes the probability that \(X\) assumes value \(k\), and \(s\) represents a real number.
(1) Show the following equalities (a), (b).
- (a) \(\varphi_X(1) = 1\)
- (b) \(\frac{d \varphi_X}{ds}(1) = E\{X\}\)
In the following, \(N\) and \(U_i\) \((i = 1, 2, \ldots)\) are mutually independent, identically distributed random variables that take values in non-negative integers.
(2) For a positive integer \(n\), we define a random variable \(Y_n = Y_n(U_1, U_2, \ldots) = \sum_{i=1}^n U_i\). Show \(\varphi_{Y_n}(s) = \varphi_N(s)^n\).
(3) We define a random variable \(W = W(N, Y_1, Y_2, \ldots) = \sum_{n=1}^{\infty} Y_n I(N = n)\). Here,
Show \(\varphi_W(s) = \varphi_N(\varphi_N(s))\).
(Hint: \(\Pr\{W = k\} = \sum_{n=1}^{\infty} \Pr\{Y_n = k\} \Pr\{N = n\}\) for a positive integer \(k\))
(4) For \(\Pr\{N = k\} = q^k (1 - q)\), \((0 < q < 1)\), calculate \(E\{N\}\) and \(E\{W\}\).
对于一个取非负整数值的任意随机变量 \(X\),我们定义 \(X\) 的概率生成函数 \(\varphi_X(s)\) 为 \(\varphi_X(s) = E\{s^X\} = \sum_{k=0}^{\infty} s^k \Pr\{X = k\}\)。其中,\(E\{A\}\) 表示 \(A\) 的期望值,\(\Pr\{X = k\}\) 表示 \(X\) 取值为 \(k\) 的概率,\(s\) 表示一个实数。
(1) 证明以下等式 (a), (b)。
- (a) \(\varphi_X(1) = 1\)
- (b) \(\frac{d \varphi_X}{ds}(1) = E\{X\}\)
在下列情形中,\(N\) 和 \(U_i\) \((i = 1, 2, \ldots)\) 是相互独立的同分布随机变量,取非负整数值。
(2) 对于一个正整数 \(n\),我们定义一个随机变量 \(Y_n = Y_n(U_1, U_2, \ldots) = \sum_{i=1}^n U_i\)。证明 \(\varphi_{Y_n}(s) = \varphi_N(s)^n\)。
(3) 我们定义一个随机变量 \(W = W(N, Y_1, Y_2, \ldots) = \sum_{n=1}^{\infty} Y_n I(N = n)\)。 其中,
证明 \(\varphi_W(s) = \varphi_N(\varphi_N(s))\)。
(提示:\(\Pr\{W = k\} = \sum_{n=1}^{\infty} \Pr\{Y_n = k\} \Pr\{N = n\}\) 对于一个正整数 \(k\))
(4) 对于 \(\Pr\{N = k\} = q^k (1 - q)\), \((0 < q < 1)\),计算 \(E\{N\}\) 和 \(E\{W\}\)。
Kai
(1)
(a)
The last step follows from the fact that the sum of probabilities over all possible outcomes is 1.
(b)
Evaluating at \(s = 1\):
(2)
We need to show \(\varphi_{Y_n}(s) = \varphi_N(s)^n\) where \(Y_n = \sum_{i=1}^n U_i\).
(3)
We need to show \(\varphi_W(s) = \varphi_N(\varphi_U(s))\) where \(W = \sum_{n=1}^{\infty} Y_n I(N = n)\).
Using the hint and the definition of probability generating function:
(4)
Given \(\Pr\{N = k\} = q^k (1 - q)\), \((0 < q < 1)\), we need to calculate \(E\{N\}\) and \(E\{W\}\).
First, let's calculate \(E\{N\}\):
Now, for \(E\{W\}\), we can use the result from part 1(b) and part 3:
Therefore, \(E\{W\} = (\frac{q}{1-q})^2\).
Knowledge
概率论 概率生成函数 条件期望 全期望公式 复合分布
难点思路
- 理解概率生成函数的定义和基本性质
- 利用独立性推导和的概率生成函数
- 使用条件期望和全期望公式推导复合随机变型的概率生成函数
- 应用概率生成函数的性质计算具体分布的期望
解题技巧和信息
- 概率生成函数的基本性质:
- \(\varphi_X(1) = 1\)
- \(\frac{d \varphi_X}{ds}(1) = E\{X\}\)
- \(\varphi_{X+Y}(s) = \varphi_X(s) \cdot \varphi_Y(s)\) (对于独立的 \(X\) 和 \(Y\))
- 几何分布的概率生成函数:如果 \(X \sim Geo(p)\),则 \(\varphi_X(s) = \frac{p}{1-(1-p)s}\)
- 利用全期望公式:\(E\{Y\} = E\{E\{Y|X\}\}\)
重点词汇
- Probability generating function: 概率生成函数
- Independent and identically distributed (i.i.d.): 独立同分布
- Compound distribution: 复合分布
- Conditional expectation: 条件期望
- Law of total expectation: 全期望公式
- Geometric distribution: 几何分布