Skip to content

東京大学 工学系研究科 2017年度 数学 第1問

Author

Description

I、以下の定積分を求めよ。

\[ \begin{align} I = \int_2^4 \frac{\text{d}x}{\sqrt{(x-2)(4-x)}} \label{1} \end{align} \]

II、以下の微分方程式の一般解と特異解を求めよ。

\[ \begin{align} y = x \frac{\text{d}y}{\text{d}x} + \frac{\text{d}y}{\text{d}x} + \bigg(\frac{\text{d}y}{\text{d}x} \bigg)^2 \label{2} \end{align} \]

III、以下の微分方程式の一般解を求めよ。

\[ \begin{align} x^2 \frac{\text{d}^2y}{\text{d}x^2} - x \frac{\text{d}y}{\text{d}x} - 8y = x^2 \label{3} \end{align} \]

Kai

(I)

\[ \begin{aligned} I &= \int_2^4 \frac{\text{d}x}{\sqrt{(x-2)(4-2)}} \\ &=\int_2^4 \frac{\text{d}x}{\sqrt{1-(x-3)^2}} \\ &=\int_{-\pi /2}^{\pi /2} \frac{\cos\theta \text{d}\theta}{\sqrt{1-\sin^2 \theta}} \qquad (\text{置換:} \quad x - 3 = \sin \theta) \\ &=\int_{-\pi /2}^{\pi /2} \text{d}\theta = \frac{\pi}{2} - (-\frac{\pi}{2}) = \pi \end{aligned} \]

(II)

\[ \begin{aligned} y = x \frac{\text{d}y}{\text{d}x} + \frac{\text{d}y}{\text{d}x} + \bigg(\frac{\text{d}y}{\text{d}x} \bigg)^2 \\ y = xy' + y' + (y')^2 \\ \end{aligned} \]

\(x\text{で微分して}\)

\[ \begin{aligned} y' = y' + xy'' + y'' + 2y'y''\\ y''(x + 1 + 2y') = 0 \end{aligned} \]

(i)

\(y'' = 0\) のとき,

\[ y = a + b \]

となり, 式(\(\ref{2}\))に代入すると,

\[ \begin{aligned} ax + b &= a(x + 1) + a^2 \\ b &= a^2 + a \end{aligned} \]

である, よって一般解 \(y = ax + a^2 + a\) を得る。

(ii)

\(x + 1 + 2y' = 0\) のとき,

\[ \begin{aligned} y' &= -\frac{1}{2}(x + 1) \\ y &= -\frac{1}{4}x^2 - \frac{1}{2}x + C \\ \end{aligned} \]

となり, 式(\(\ref{2}\))に代入すると,

\[ \begin{aligned} - \frac{1}{4}x^2 - \frac{1}{2}x + C &= (x + 1)(-\frac{1}{2}x - \frac{1}{2}) + (-\frac{1}{2}x - \frac{1}{2})^2 \\ C &= -\frac{1}{4} \end{aligned} \]

である, よって特異解 \(y = -\frac{1}{4}x^2 - \frac{1}{2}x - \frac{1}{4}\) を得る。

(III)

\[ \begin{aligned} x^2 \frac{\text{d}^2y}{\text{d}x^2} - x \frac{\text{d}y}{\text{d}x} - 8y = x^2 \end{aligned} \]

\(x = e^{t}\) とおくと,

\[ \begin{aligned} \frac{\text{d}x}{\text{d}t} &= e^{t} = x , \qquad \frac{\text{d}t}{\text{d}x} = \frac{1}{x} \\ x \frac{\text{d}y}{\text{d}x}&= x \frac{\text{d}y}{\text{d}t} \frac{\text{d}t}{\text{d}x} = \frac{\text{d}y}{\text{d}t} \\ \frac{\text{d}^2y}{\text{d}x^2} &= \frac{\text{d}}{\text{d}x} (\frac{1}{x} \frac{\text{d}y}{\text{d}t}) \\ &= - \frac{1}{x^2} \frac{\text{d}y}{\text{d}t} + \frac{1}{x} \frac{\text{d}}{\text{d}t} \frac{\text{d}t}{\text{d}x} \frac{\text{d}y}{\text{d}t} \\ &= -\frac{1}{x^2} \frac{\text{d}y}{text{d}t} + \frac{1}{x^2} \frac{\text{d}^2y}{\text{d}t^2} \\ &\therefore x^2\frac{\text{d}^2y}{\text{d}x^2} = \frac{\text{d}^2y}{\text{d}t^2} - \frac{\text{d}y}{\text{d}t} \\ \end{aligned} \]

であるから,式(\(\ref{3}\))は,

\[ \begin{align} \frac{\text{d}^2y}{\text{d}t^2} - \frac{\text{d}y}{\text{d}t} - \frac{\text{d}y}{\text{d}t} - 8y &= e^{2t} \nonumber \\ \frac{\text{d}^2y}{\text{d}t^2} - 2\frac{\text{d}y}{\text{d}t} - 8y &= e^{2t} \label{4} \end{align} \]

となる。特性方程式 \(\lambda^2 - 2\lambda - 8 = 0\) の解は,

\[ (\lambda - 4)(\lambda + 2) = 0 \\ \therefore \lambda = -2 , \quad 4 \]

だから, 斉次の一般解は \(y = C_{1}e^{-2t} + C_{2}e^{4t}\)

一方, 特解を \(y = Ae^{2t}\) と予想して式(\(\ref{4}\))に代入すると,

\[ \begin{aligned} 4Ae^{2t} &- 4Ae^{2t} - 8Ae^{2t} = e^{2t} \\ &\therefore A = -\frac{1}{8} \end{aligned} \]

となり, 特解 \(y = -\frac{1}{8}e^{2t}\) を得る。よって求める一般解は,

\[ \begin{aligned} y &= C_{1}e^{-2t} + C_{2}e^{4t} - \frac{1}{8}e^{2t} \\ &= C_{1}x^{-2} + C_{2}x^4 - \frac{1}{8}x \\ \end{aligned} \]