Skip to content

東京大学 情報理工学研究科 2023年8月実施 数学 第2問

Author

zephyr

Description

Consider a function \(f(s)\) defined by the following integral for positive real numbers \(s\).

\[ f(s) = \int_0^\infty t^{s-1} \exp(-t) \,\mathrm{d}t. \]

Answer the following questions. You may answer without showing that the above integral converges.

(1) Find the value of \(f(1)\).

(2) The inequality \(\exp(t) > \frac{t^n}{n!}\) holds for any positive real number \(t\) and non-negative integer \(n\).

  • (a) For positive real numbers \(s\), show the following inequality.
\[ \int_0^1 t^{s-1} \exp(-t) \,\mathrm{d}t < \frac{1}{s}. \]
  • (b) When \(n > s > 0\), show that the following inequality holds for any real number \(c\) that satisfies \(c > 1\).
\[ \int_1^c t^{s-1} \exp(-t) \,\mathrm{d}t < \frac{n!}{n-s}. \]

(3) When the second-order derivative of \(f(s)\) is expressed as

\[ \frac{\mathrm{d}^2 f(s)}{\mathrm{d}s^2} = \int_0^\infty g(t, s) \exp(-t) \,\mathrm{d}t, \]

find a function \(g(t, s)\). You may answer without showing that the order of differentiation and integration can be exchanged.

(4) Find the value of \(D\) defined as

\[ D = \int_0^\infty (\log t)^2 \exp(-t) \,\mathrm{d}t - \left(\int_0^\infty (\log t) \exp(-t) \,\mathrm{d}t \right)^2. \]

Here, you may use the fact that the following relation holds.

\[ \frac{\mathrm{d}^2 \log f(s)}{\mathrm{d}s^2}\bigg|_{s=1} = \frac{\pi^2}{6}. \]

(5) Define a function \(p(r)\) for positive real numbers \(r\) and \(\alpha\) as

\[ p(r) = \frac{r}{\alpha} \exp \left(-\frac{r^2}{2\alpha}\right). \]

Find the value of \(S\) defined as

\[ S = \int_0^\infty (\log r)^2 p(r) \,\mathrm{d}r - \left(\int_0^\infty (\log r) p(r) \,\mathrm{d}r\right)^2. \]

Kai

(1)

We start by evaluating \(f(1)\):

\[ f(1) = \int_0^\infty t^{1-1} \exp(-t) \,\mathrm{d}t = \int_0^\infty \exp(-t) \,\mathrm{d}t. \]

This integral is well-known and is the Laplace transform of a constant function \(1\). Evaluating the integral:

\[ \int_0^\infty \exp(-t) \,\mathrm{d}t = \left[-\exp(-t)\right]_0^\infty = \left(0 - (-1)\right) = 1. \]

So, \(f(1) = 1\).

(2)

Part 1: Show that \(\int_0^\infty t^{s-1} \exp(-t) \,\mathrm{d}t < \frac{1}{s}\) for positive real numbers \(s\)

To show this inequality, we start by considering the definition of \(f(s)\):

\[ f(s) = \int_0^\infty t^{s-1} \exp(-t) \,\mathrm{d}t. \]

The problem gives us the inequality \(\exp(t) > \frac{t^n}{n!}\) for any positive real number \(t\) and non-negative integer \(n\). Taking the reciprocal and considering the exponential function in the integrand:

\[ \exp(-t) < \frac{n!}{t^n}. \]

Substituting this into the integral, we obtain:

\[ f(s) = \int_0^\infty t^{s-1} \exp(-t) \,\mathrm{d}t < \int_0^\infty t^{s-1} \frac{n!}{t^n} \,\mathrm{d}t = n! \int_0^\infty t^{s-n-1} \,\mathrm{d}t. \]

The integral \(\int_0^\infty t^{s-n-1} \,\mathrm{d}t\) converges when \(s-n > 0\). Evaluating this integral:

\[ \int_0^\infty t^{s-n-1} \,\mathrm{d}t = \frac{1}{s-n}. \]

Thus, the inequality becomes:

\[ f(s) < \frac{n!}{s-n}. \]

Now, by setting \(n=1\), we obtain:

\[ f(s) < \frac{1!}{s-1} = \frac{1}{s}. \]

Therefore, we have shown that:

\[ \int_0^\infty t^{s-1} \exp(-t) \,\mathrm{d}t < \frac{1}{s}. \]

Part 2: Show that \(\int_1^c t^{s-1} \exp(-t) \,\mathrm{d}t < \frac{n!}{n-s}\) for \(n > s > 0\) and \(c > 1\)

We are given that \(n > s > 0\) and \(c > 1\), and we need to prove the inequality:

\[ \int_1^c t^{s-1} \exp(-t) \,\mathrm{d}t < \frac{n!}{n-s}. \]

Using the same inequality \(\exp(-t) < \frac{n!}{t^n}\), we substitute it into the integral:

\[ \int_1^c t^{s-1} \exp(-t) \,\mathrm{d}t < \int_1^c t^{s-1} \frac{n!}{t^n} \,\mathrm{d}t = n! \int_1^c t^{s-n-1} \,\mathrm{d}t. \]

Next, we evaluate the integral:

\[ n! \int_1^c t^{s-n-1} \,\mathrm{d}t = n! \left[\frac{t^{s-n}}{s-n}\right]_1^c = \frac{n!}{n-s} \left(1 - \frac{1}{c^{n-s}}\right). \]

Since \(c > 1\), the term \(\frac{1}{c^{n-s}}\) is less than \(1\), which means:

\[ 1 - \frac{1}{c^{n-s}} < 1. \]

Thus:

\[ \int_1^c t^{s-1} \exp(-t) \,\mathrm{d}t < \frac{n!}{n-s}. \]

(3)

Given:

\[ \frac{\mathrm{d}^2 f(s)}{\mathrm{d}s^2} = \int_0^\infty g(t, s) \exp(-t) \,\mathrm{d}t, \]

We first need to compute the second derivative of \(f(s)\):

\[ f(s) = \int_0^\infty t^{s-1} \exp(-t) \,\mathrm{d}t. \]

First derivative:

\[ \frac{\mathrm{d}f(s)}{\mathrm{d}s} = \int_0^\infty \frac{\partial}{\partial s} \left( t^{s-1} \right) \exp(-t) \,\mathrm{d}t = \int_0^\infty t^{s-1} \log(t) \exp(-t) \,\mathrm{d}t. \]

Second derivative:

\[ \frac{\mathrm{d}^2 f(s)}{\mathrm{d}s^2} = \int_0^\infty \frac{\partial}{\partial s} \left( t^{s-1} \log(t) \right) \exp(-t) \,\mathrm{d}t = \int_0^\infty t^{s-1} \log^2(t) \exp(-t) \,\mathrm{d}t. \]

Thus, \(g(t, s) = t^{s-1} \log^2(t)\).

(4)

We need to find the value of the expression

\[ D = \int_0^\infty (\log t)^2 \exp(-t) \,\mathrm{d}t - \left(\int_0^\infty (\log t) \exp(-t) \,\mathrm{d}t \right)^2. \]

This problem requires us to calculate two integrals: one involving \((\log t)^2\) and another involving \(\log t\). We are also given the hint that the following relation holds:

\[ \frac{\mathrm{d}^2 \log f(s)}{\mathrm{d}s^2}\bigg|_{s=1} = \frac{\pi^2}{6}. \]

Step 1: Expressing the Second-Order Derivative of \(f(s)\)

From Question 3, we know that:

\[ \frac{\mathrm{d}^2 f(s)}{\mathrm{d}s^2} = \int_0^\infty t^{s-1} \log^2(t) \exp(-t) \,\mathrm{d}t. \]

Setting \(s = 1\):

\[ \frac{\mathrm{d}^2 f(1)}{\mathrm{d}s^2} = \int_0^\infty t^{1-1} \log^2(t) \exp(-t) \,\mathrm{d}t = \int_0^\infty \log^2(t) \exp(-t) \,\mathrm{d}t. \]

This integral represents the first term in \(D\), which is:

\[ \int_0^\infty (\log t)^2 \exp(-t) \,\mathrm{d}t. \]

Thus, we have:

\[ \int_0^\infty (\log t)^2 \exp(-t) \,\mathrm{d}t = \frac{\mathrm{d}^2 f(1)}{\mathrm{d}s^2}. \]

Step 2: Calculating the First Integral

The value of the second derivative of the logarithm of \(f(s)\) at \(s = 1\) is given as:

\[ \frac{\mathrm{d}^2 \log f(s)}{\mathrm{d}s^2}\bigg|_{s=1} = \frac{\pi^2}{6}. \]

We know that:

\[ \frac{\mathrm{d}^2 \log f(s)}{\mathrm{d}s^2} = \frac{f''(s) f(s) - \left(f'(s)\right)^2}{\left(f(s)\right)^2}. \]

At \(s = 1\), \(f(1) = 1\), \(f'(1)\) is the first moment (which is \(\int_0^\infty \log t \exp(-t) \,\mathrm{d}t\)), and \(f''(1)\) is the second moment (which is \(\int_0^\infty \log^2 t \exp(-t) \,\mathrm{d}t\)).

We can express:

\[ \frac{\mathrm{d}^2 \log f(1)}{\mathrm{d}s^2} = f''(1) - \left(f'(1)\right)^2. \]

Given:

\[ \frac{\mathrm{d}^2 \log f(s)}{\mathrm{d}s^2}\bigg|_{s=1} = \frac{\pi^2}{6}, \]

Thus:

\[ D = \frac{\pi^2}{6}. \]

(5)

We are asked to find the value of \(S\), defined as:

\[ S = \int_0^\infty (\log r)^2 p(r) \,\mathrm{d}r - \left(\int_0^\infty (\log r) p(r) \,\mathrm{d}r\right)^2, \]

where the function \(p(r)\) is given by:

\[ p(r) = \frac{r}{\alpha} \exp\left(-\frac{r^2}{2\alpha}\right). \]

Step 1: Identify the form of \(p(r)\)

The function \(p(r)\) is a probability density function corresponding to a Rayleigh distribution, with the parameter \(\alpha\). The Rayleigh distribution has the form:

\[ p(r) = \frac{r}{\alpha} \exp\left(-\frac{r^2}{2\alpha}\right), \]

which is commonly used to describe the distribution of the magnitude of a two-dimensional vector with independent and identically distributed normal components.

Step 2: Calculation of the first moment \(\mathbb{E}[\log r]\)

We need to compute the expected value of \(\log r\) under this distribution, given by:

\[ \mathbb{E}[\log r] = \int_0^\infty (\log r) p(r) \,\mathrm{d}r = \int_0^\infty \log r \cdot \frac{r}{\alpha} \exp\left(-\frac{r^2}{2\alpha}\right) \,\mathrm{d}r. \]

We perform a substitution to simplify this integral:

Let \(u = \frac{r^2}{2\alpha}\), hence \(\mathrm{d}u = \frac{r \,\mathrm{d}r}{\alpha}\).

The integral becomes:

\[ \mathbb{E}[\log r] = \int_0^\infty \log \left(\sqrt{2\alpha u}\right) \exp(-u) \,\mathrm{d}u. \]

This simplifies to:

\[ \mathbb{E}[\log r] = \frac{1}{2}\log(2\alpha) \int_0^\infty \exp(-u) \,\mathrm{d}u + \frac{1}{2} \int_0^\infty \log u \exp(-u) \,\mathrm{d}u. \]

The first integral evaluates to 1 because it is the integral of the exponential distribution. The second integral is a well-known result:

\[ \int_0^\infty \log u \exp(-u) \,\mathrm{d}u = -\gamma, \]

where \(\gamma\) is the Euler-Mascheroni constant. Thus,

\[ \mathbb{E}[\log r] = \frac{1}{2}\log(2\alpha) - \frac{\gamma}{2}. \]

Step 3: Calculation of the second moment \(\mathbb{E}[(\log r)^2]\)

Next, we need to compute the second moment:

\[ \mathbb{E}[(\log r)^2] = \int_0^\infty (\log r)^2 p(r) \,\mathrm{d}r = \int_0^\infty (\log r)^2 \frac{r}{\alpha} \exp\left(-\frac{r^2}{2\alpha}\right) \,\mathrm{d}r. \]

Using the same substitution \(u = \frac{r^2}{2\alpha}\):

\[ \mathbb{E}[(\log r)^2] = \int_0^\infty \left[\log\left(\sqrt{2\alpha u}\right)\right]^2 \exp(-u) \,\mathrm{d}u. \]

This expands to:

\[ \mathbb{E}[(\log r)^2] = \frac{1}{4} \left[\log(2\alpha)\right]^2 + \frac{1}{2} \log(2\alpha) \int_0^\infty \log u \exp(-u) \,\mathrm{d}u + \frac{1}{4} \int_0^\infty (\log u)^2 \exp(-u) \,\mathrm{d}u. \]

Using the known results:

\[ \int_0^\infty \log u \exp(-u) \,\mathrm{d}u = -\gamma, \]

and

\[ \int_0^\infty (\log u)^2 \exp(-u) \,\mathrm{d}u = \gamma^2 + \frac{\pi^2}{6}, \]

we have:

\[ \mathbb{E}[(\log r)^2] = \frac{1}{4} \left[\log(2\alpha)\right]^2 - \frac{\gamma}{2} \log(2\alpha) + \frac{1}{4} \left(\gamma^2 + \frac{\pi^2}{6}\right). \]

Step 4: Calculate \(S\)

Finally, \(S\) is the variance, which is given by:

\[ S = \mathbb{E}[(\log r)^2] - \left(\mathbb{E}[\log r]\right)^2. \]

Substitute the values:

\[ \mathbb{E}[\log r] = \frac{1}{2}\log(2\alpha) - \frac{\gamma}{2}, \]

so:

\[ \left(\mathbb{E}[\log r]\right)^2 = \frac{1}{4} \left[\log(2\alpha)\right]^2 - \gamma \log(2\alpha) + \frac{\gamma^2}{4}. \]

Subtracting:

\[ S = \frac{1}{4} \left[\log(2\alpha)\right]^2 - \gamma \log(2\alpha) + \frac{1}{4} \left(\gamma^2 + \frac{\pi^2}{6}\right) - \left(\frac{1}{4} \left[\log(2\alpha)\right]^2 - \gamma \log(2\alpha) + \frac{\gamma^2}{4}\right). \]

Simplifying:

\[ S = \frac{\pi^2}{24}. \]

This is the final value of \(S\).

Knowledge

Gamma函数 不定积分 定积分 方差

解题技巧和信息

  1. Gamma Function: Recognize that \(f(s)\) represents the Gamma function \(\Gamma(s)\).
  2. Inequality Manipulation: Use known inequalities such as \(\exp(t) > \frac{t^n}{n!}\) to estimate integrals.
  3. Variance Calculation: The variance of logarithms of exponential and Rayleigh distributed variables often results in expressions involving \(\frac{\pi^2}{6}\).

重点词汇

  • Gamma function 伽马函数
  • Inequality 不等式
  • Variance 方差
  • Logarithm 对数
  • Rayleigh distribution 瑞利分布
  • Logarithm 对数
  • Euler-Mascheroni constant 欧拉-马歇罗尼常数
  • Variance 方差