東京大学 情報理工学研究科 2017年度 数学 第1問
Author
Zero, etsurin
Description
3次元ベクトル \(\left (\begin{array}{cccc} x_{n} \\ y_{n} \\ z_{n} \\ \end{array}\right)\) は式
\[
\left (\begin{array}{cccc}
x_{n+1} \\
y_{n+1} \\
z_{n+1} \\
\end{array}\right)=A
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)
(n=0,1,2,...)
\]
を満たすものとする.ただし,\(x_{0},y_{0},z_{0},\alpha\) は実数とし,
\[
A=\left (\begin{array}{cccc}
1-2\alpha & \alpha &\alpha \\
\alpha &1-\alpha &0 \\
\alpha &0 &1-\alpha \\
\end{array}\right),0<\alpha<\frac{1}{3}
\]
とする.以下の問いに答えよ.
(1)、\(x_{n},y_{n},z_{n}\) を \(x_{0},y_{0},z_{0}\) を用いて表せ.
(2)、行列 \(A\) の固有値 \(\lambda_1,\lambda_2,\lambda_3\) と,それぞれの固有値に対応する固有ベクトル \(v_{1},v_{2},v_{3}\) を求めよ.
(3)、行列 \(A\) を \(\lambda_1,\lambda_2,\lambda_3,v_{1},v_{2},v_{3}\) を用いて表せ.
(4)、\(\left (\begin{array}{cccc} x_{n} \\ y_{n} \\ z_{n} \\ \end{array}\right)\) を \(x_{0},y_{0},z_{0},\alpha\) を用いて表せ.
(5)、\(\lim_{x \rightarrow \infty} \left (\begin{array}{cccc} x_{n} \\ y_{n} \\ z_{n} \\ \end{array}\right)\) を求めよ.
(6)、以下の式
\[
f(x_{0},y_{0},z_{0})=\frac{(x_{0},y_{0},z_{0})
\left (\begin{array}{cccc}
x_{n+1} \\
y_{n+1} \\
z_{n+1} \\
\end{array}\right)}
{(x_{0},y_{0},z_{0})
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)}
\]
を \(x_{0},y_{0},z_{0}\) の関数とみなして,\(f(x_{0},y_{0},z_{0})\) の最大値および最小値お求めよ.ただし,\(x_{0}^2+y_{0}^2+z_{0}^2 \neq 0\) とする.
Kai
(1)
By the following given equations:
\[
\left (\begin{array}{cccc}
x_{n+1} \\
y_{n+1} \\
z_{n+1} \\
\end{array}\right) = A
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right) =
\left (\begin{array}{cccc}
1-2\alpha &\alpha & \alpha \\
\alpha & 1-\alpha & 0 \\
\alpha & 0 & 1-\alpha \\
\end{array}\right)
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)
\]
We have
\[
x_{n+1}+y_{n+1}+z_{n+1}=
(1\ 1\ 1)
\left (\begin{array}{cccc}
x_{n+1} \\
y_{n+1} \\
z_{n+1} \\
\end{array}\right)=
(1\ 1\ 1) A
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)=x_{n}+y_{n}+z_{n}
\]
Therefore:
\[
x_{n}+y_{n}+z_{n} = x_{n-1}+y_{n-1}+z_{n-1} = \cdots = x_{0}+y_{0}+z_{0}
\]
(2)
\[
\begin{aligned}
\det (A - \lambda I) &= \begin{vmatrix}
1 - 2\alpha - \lambda & \alpha & \alpha \\
\alpha & 1 - \alpha - \lambda & 0 \\
\alpha & 0 & 1 - \alpha - \lambda
\end{vmatrix}
\\
&= (\lambda^2 + (3\alpha - 2)\lambda + (1-3\alpha))(1 - \alpha - \lambda) \\
&= 0
\end{aligned}
\]
Hence,
\[
\lambda_{1}=1, v_{1}= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
\]
\[
\lambda_{2}= 1-\alpha, v_{2}= \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}
\]
\[
\lambda_{3}= 1-3\alpha, v_{2}= \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}
\]
(3)
From (2), we know that
\[
A(v_{1}\ v_{2}\ v_{3})=(v_{1}\ v_{2}\ v_{3})\text{diag}(\lambda_{1}\ \lambda_{2}\ \lambda_{3})
\]
Hence,
\[
A=(v_{1}\ v_{2}\ v_{3})\text{diag}(\lambda_{1}\ \lambda_{2}\ \lambda_{3})(v_{1}\ v_{2}\ v_{3})^{-1}
\]
Which is,
\[
A=\left (\begin{array}{cccc}
1 &0 & -2\\
1 &-1 & 1\\
1 &1 & 1\\
\end{array}\right)
\left (\begin{array}{cccc}
1 &0 & 0\\
1 &1-\alpha &0\\
0 &0 &1-3\alpha\\
\end{array}\right)
\left (\begin{array}{cccc}
1 &0 & -2\\
1 &-1 & 1\\
1 &1 & 1\\
\end{array}\right)^{-1}
\]
(4)
Note that,
\[
\begin{aligned}
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)&=A^{n}
\left (\begin{array}{cccc}
x_{0} \\
y_{0} \\
z_{0} \\
\end{array}\right) \\
&=
((v_{1}\ v_{2}\ v_{3})\text{diag}(\lambda_{1}\ \lambda_{2}\ \lambda_{3})(v_{1}\ v_{2}\ v_{3})^{-1})^{n}
\left (\begin{array}{cccc}
x_{0} \\
y_{0} \\
z_{0} \\
\end{array}\right) \\
&=
(v_{1}\ v_{2}\ v_{3})\text{diag}(\lambda_{1}\ \lambda_{2}\ \lambda_{3})^{n}(v_{1}\ v_{2}\ v_{3})^{-1}
\left (\begin{array}{cccc}
x_{0} \\
y_{0} \\
z_{0} \\
\end{array}\right)
\end{aligned}
\]
Normalize the characteristic vectors:
\[
q_{1}=\frac{v_{1}}{\Vert v_{1}\Vert}= \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}
\]
\[
q_{2}=\frac{v_{2}}{\Vert v_{2}\Vert}= \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}
\]
\[
q_{3}=\frac{v_{3}}{\Vert v_{3}\Vert} = \begin{pmatrix}
-\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}
\]
We have
\[
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)=
(q_{1}\ q_{2}\ q_{3})\text{diag}(\lambda_{1}^{n},\lambda_{2}^{n},\lambda_{3}^{n})(q_{1}\ q_{2}\ q_{3})^{-1}
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)
\]
Since \(0<\alpha<\frac{1}{3}\), \(A\) is positive-definite.
\[
(q_{1}\ q_{2}\ q_{3})^{-1}=
(q_{1}\ q_{2}\ q_{3})^{T}=
\left (\begin{array}{cccc}
q_{1}^{T} \\
q_{2}^{T} \\
q_{3}^{T} \\
\end{array}\right)
\]
Hence,
\[
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)=
(\lambda_{1}^{n}q_{1}q_{1}^{T}+
\lambda_{2}^{n}q_{2}q_{2}^{T}+
\lambda_{3}^{n}q_{3}q_{3}^{T})
\left (\begin{array}{cccc}
x_{0} \\
y_{0} \\
z_{0} \\
\end{array}\right)
\]
where
\[
q_{1}q_{1}^{T}=
\left (\begin{array}{cccc}
\frac{1}{3} &\frac{1}{3} &\frac{1}{3}\\
\frac{1}{3} &\frac{1}{3} &\frac{1}{3}\\
\frac{1}{3} &\frac{1}{3} &\frac{1}{3}\\
\end{array}\right),
\]
\[
q_{2}q_{2}^{T}=
\left (\begin{array}{cccc}
0 &0 &0\\
0 &\frac{1}{2} &-\frac{1}{2}\\
0 &-\frac{1}{2} &\frac{1}{2}\\
\end{array}\right),
\]
\[
q_{3}q_{3}^{T}=
\left (\begin{array}{cccc}
\frac{2}{3} &-\frac{1}{3} &-\frac{1}{3}\\
-\frac{1}{3} &\frac{1}{6} &\frac{1}{6}\\
-\frac{1}{3} &\frac{1}{6} &\frac{1}{6}\\
\end{array}\right)
\]
(5)
Since
\[
\vert\lambda_{1}\vert=1,
\vert\lambda_{2}\vert=1-\alpha<1,
\vert\lambda_{3}\vert=1-3\alpha<1
\]
Hence we have,
\[
\begin{aligned}
\lim_{x \rightarrow \infty}
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)&=
(\lim_{x \rightarrow \infty}\lambda_{1}^{n}q_{1}q_{1}^{T}+\lim_{x \rightarrow \infty}\lambda_{2}^{n}q_{2}q_{2}^{T}+\lim_{x \rightarrow \infty}\lambda_{3}^{n}q_{3}q_{3}^{T})
\left (\begin{array}{cccc}
x_{0} \\
y_{0} \\
z_{0} \\
\end{array}\right) \\
&=
q_{1}q_{1}^{T}
\left (\begin{array}{cccc}
x_{0} \\
y_{0} \\
z_{0} \\
\end{array}\right)
\end{aligned}
\]
Therefore,
\[
\lim_{x \rightarrow \infty}
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)=
\frac{1}{3}(x_{0}+y_{0}+z_{0})
\left (\begin{array}{cccc}
1 \\
1 \\
1 \\
\end{array}\right)
\]
(6)
Note that
\[
f(x_{0},y_{0},z_{0})=
\frac{\begin{pmatrix} x_{n} & y_{n} & z_{n} \end{pmatrix} A
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)}
{\begin{pmatrix} x_{n} & y_{n} & z_{n} \end{pmatrix}
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)}
\]
Let
\[
p_{n}=\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)
\]
where
\[
\begin{pmatrix} x_{n} & y_{n} & z_{n} \end{pmatrix}
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)=
x_{n}^{2}+y_{n}^{2}+z_{n}^{2}=\Vert p_{n} \Vert ^{2}
\]
and
\[
\begin{pmatrix} x_{n} & y_{n} & z_{n} \end{pmatrix} A
\left (\begin{array}{cccc}
x_{n} \\
y_{n} \\
z_{n} \\
\end{array}\right)=
\lambda_{1}p_{n}^{T}(q_{1}q_{1}^{T}p_{n})+\lambda_{2}p_{n}^{T}(q_{2}q_{2}^{T}p_{n})+\lambda_{3}p_{n}^{T}(q_{3}q_{3}^{T}p_{n})
\]
Since A is positive-definite, \(q_{1},q_{2},q_{3}\) are all orthogonal, that is:
\[
q_{1}\perp q_{2},q_{2}\perp q_{3},q_{3}\perp q_{1}
\]
if \(p_{n}//q_{1}\), then \(p_{n}\perp q_{2}\) and \(p_{n}\perp q_{3}\), the maximum of \(f(x_{0},y_{0},z_{0})\) is
\[
\max(f(x_{0},y_{0},z_{0}))=\lambda_{1}=1
\]
if \(p_{n}//q_{3}\),then \(p_{n}\perp q_{1}\) and \(p_{n}\perp q_{2}\), the minimum of \(f(x_{0},y_{0},z_{0})\) is
\[
\min(f(x_{0},y_{0},z_{0}))=\lambda_{3}=1-3\alpha
\]