Skip to content

東京大学 情報理工学系研究科 電子情報学専攻 2018年度 専門 第5問

Author

Josuke

Description

Answer the following questions about discrete signal processing. Here, \(T\) is the sampling interval.

(1) Show the definition of the \(Z\)-transform \(X(z)\) for the discrete signal series \(x_n(n = 0,1,2,\cdots)\), which is defined for \(n \ge 0\). Here, \(z\) is a complex variable.

(2) Derive the transfer function \(H(s)\) in the \(s\)-domain(the Laplace transform domain) of the circuit in Fig.1.

(3) The relationship between the Laplace transform and the \(Z\)-transform is described as \(z = e^{sT}\). Derive the following approximation.

\[ s \simeq \frac{2}{T}\frac{1 - z^{-1}}{1 + z^{-1}}. \]

You can use the following equation if necessary.

\[ e^{x} \simeq 1 + x. \]

(4) Convert \(H(s)\) to the transfer function \(H(z)\) in the \(z\)-domain by using the approximation derived in (3). Here, we assume \(T = 1\).

(5) Show a schematic of a discrete signal circuit that corresponds to \(H(z)\) in (4).

(6) By taking the same procedure, show a schematic of a discrete signal circuit for the circuit shown in Fig.2.

Kai

(1)

\[ X(z) = \sum_{n = 0}^{\infty}x(n)z^{-n} \]

(2)

\[ H(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} = \frac{1}{1 + s} \]

(3)

\[ z^{-1} = e^{sT} = \frac{e^{-\frac{1}{2}sT}}{e^{\frac{1}{2}sT}} = \frac{1 - \frac{1}{2}sT}{1 + \frac{1}{2}sT} \]
\[ \begin{aligned} z^{-1}(1 + \frac{1}{2}sT) &= 1 - \frac{1}{2}sT \\ z^{-1} &= 1 - \frac{1}{2}sT(1 + z^{-1}) \\ 1 - z^{-1} &= \frac{1}{2}sT(1 + z^{-1}) \\ s &= \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}} \end{aligned} \]

(4)

\[ \begin{aligned} H(s) &= \frac{1}{1 + s} = \frac{1}{1 + 2 \cdot \frac{1 - z^{-1}}{1 + z^{-1}}} = \frac{1 + z^{-1}}{3 - z^{-1}} \\ &= \frac{\frac{1}{3}}{1 - \frac{1}{3}z^{-1}} + \frac{\frac{1}{3}z^{-1}}{1 - \frac{1}{3}z^{-1}} \end{aligned} \]

(5)

\[ H(z) = \frac{Y(z)}{X(z)} = \frac{1 + z^{-1}}{3 - z^{-1}} \]
\[ (3 - z^{-1})Y(z) = (1 + z^{-1})X(z) \]
\[ Y(z) = \frac{1}{3}[X(z) + z^{-1}(X(z) + Y(z))] \]

(6)

\[ H(s) = \frac{s}{1 + s} \]
\[ H(z) = \frac{2 \cdot \frac{1 - z^{-1}}{1 + z^{-1}}}{1 + 2 \cdot \frac{1 - z^{-1}}{1 + z^{-1}}} = \frac{2 - 2z^{-1}}{3 - z^{-1}} \]
\[ \frac{Y(z)}{X(z)} = \frac{2 - 2z^{-1}}{3 - z^{-1}} \]
\[ Y(z) = \frac{1}{3}[2X(z) + z^{-1}(Y(z) - 2X(z))] \]