東京大学 情報理工学系研究科 コンピュータ科学専攻 2022年2月実施 問題2
Author
Description
Let \(G = (V, E)\) be a simple undirected graph with the vertex set \(V = \{v_i \mid i = 1, \ldots, n\}\) and edge set \(E\). For an \(n\)-dimensional vector \(\mathbf{x} = (x_1, \ldots, x_n) \in \{-1, +1\}^n\), define \(f_G(\mathbf{x})\) by
Answer the following questions.
(1) For the case where \(G\) is a complete graph \(K_n\) of \(n\) vertices, compute \(a_n = \max_{\mathbf{x} \in \{-1, +1\}^n} f_G(\mathbf{x})\).
(2) Let \(K_n\) and \(a_n\) be those given in question (1). Let \(b_n\) be the number of edges of \(K_n\). Compute
(3) Let \(G\) be an arbitrary simple undirected graph. When each \(x_i\) takes a value of either \(-1\) or \(+1\) with probability \(\frac{1}{2}\) independently, compute the expected value of \(f_G(\mathbf{x})\). You may use the linearity of expectation.
(4) Show that, for any simple undirected graph \(G\), there exists some \(\mathbf{x} \in \{-1, +1\}^n\) such that
Here, \(|E|\) denotes the number of edges of \(G\).
令 \(G = (V, E)\) 为一个简单无向图,其顶点集为 \(V = \{v_i \mid i = 1, \ldots, n\}\),边集为 \(E\)。对于一个 \(n\) 维向量 \(\mathbf{x} = (x_1, \ldots, x_n) \in \{-1, +1\}^n\),定义 \(f_G(\mathbf{x})\) 为
回答以下问题。
(1) 当 \(G\) 是一个 \(n\) 个顶点的完全图 \(K_n\) 时,计算 \(a_n = \max_{\mathbf{x} \in \{-1, +1\}^n} f_G(\mathbf{x})\)。
(2) 令 \(K_n\) 和 \(a_n\) 为问题(1)中给出的。令 \(b_n\) 为 \(K_n\) 的边数。计算
(3) 令 \(G\) 为任意一个简单无向图。当每个 \(x_i\) 独立地以 \(\frac{1}{2}\) 的概率取 \(-1\) 或 \(+1\) 时,计算 \(f_G(\mathbf{x})\) 的期望值。你可以使用期望值的线性性。
(4) 证明对于任意简单无向图 \(G\),存在某个 \(\mathbf{x} \in \{-1, +1\}^n\) 使得
这里,\(|E|\) 表示 \(G\) 的边数。
Kai
(1)
For \(G = K_n\), a complete graph with \(n\) vertices, every pair of distinct vertices is connected by an edge. Thus, the edge set \(E\) has \(\binom{n}{2} = \frac{n(n-1)}{2}\) edges.
To compute \(a_n = \max_{\mathbf{x} \in \{-1, +1\}^n} f_G(\mathbf{x})\), consider the definition of \(f_G(\mathbf{x})\):
For each edge \((v_i, v_j)\), the term \(\frac{1 - x_i x_j}{2}\) is either \(0\) or \(1\):
To maximize \(f_G(\mathbf{x})\), we need to maximize the number of edges where \(x_i \neq x_j\). Let \(k\) be the number of vertices where \(x_i = 1\), and \(n-k\) be the number of vertices where \(x_i = -1\).
The number of edges between vertices with \(x_i = 1\) and \(x_j = -1\) is \(k(n-k)\). Therefore:
We need to maximize \(k(n-k)\). The function \(k(n-k)\) is a quadratic function in \(k\) with its maximum value when \(k = \frac{n}{2}\).
Case 1: \(n\) is even
When \(n\) is even, let \(k = \frac{n}{2}\). Then:
Case 2: \(n\) is odd
When \(n\) is odd, let \(k = \left\lfloor \frac{n}{2} \right\rfloor\) or \(k = \left\lceil \frac{n}{2} \right\rceil\). Either way, \(k(n-k)\) is maximized when the sizes of the two groups differ by at most one. Therefore:
or
Since \(\left\lfloor \frac{n}{2} \right\rfloor = \left(\frac{n-1}{2}\right)\) and \(\left\lceil \frac{n}{2} \right\rceil = \left(\frac{n+1}{2}\right)\), we have:
Thus:
In conclusion:
(2)
The number of edges in a complete graph \(K_n\) is \(b_n = \binom{n}{2} = \frac{n(n-1)}{2}\).
Using the result from Question 1:
We have:
Thus,
(3)
Let \(G = (V, E)\) be an arbitrary simple undirected graph, and \(\mathbf{x} = (x_1, \ldots, x_n) \in \{-1, +1\}^n\) with each \(x_i\) taking values \(-1\) or \(1\) independently with probability \(\frac{1}{2}\).
To find the expected value of \(f_G(\mathbf{x})\), use the linearity of expectation:
Now, consider \(\mathbb{E}\left[\frac{1 - x_i x_j}{2}\right]\):
since \(x_i\) and \(x_j\) are independent and each has expectation \(0\) (values are \(-1\) or \(1\) with equal probability).
Thus,
Therefore,
(4)
To show that there exists some \(\mathbf{x} \in \{-1, +1\}^n\) such that \(f_G(\mathbf{x}) \geq \frac{|E|}{2}\), consider the expected value derived in Question 3.
We have:
Since \(\mathbb{E}[f_G(\mathbf{x})]\) is the average value of \(f_G(\mathbf{x})\) over all possible \(\mathbf{x} \in \{-1, +1\}^n\), there must be at least one particular \(\mathbf{x} \in \{-1, +1\}^n\) for which \(f_G(\mathbf{x}) \geq \frac{|E|}{2}\). Otherwise, the average value could not be \(\frac{|E|}{2}\).
Therefore, there exists some \(\mathbf{x} \in \{-1, +1\}^n\) such that:
Knowledge
图论 期望值 极大值
难点解题思路
在第 1 题中,找到使得 \(f_G(\mathbf{x})\) 最大的 \(\mathbf{x}\) 是关键。在处理完全图时,可以通过对称性和顶点划分来简化问题。对于一般图,期望值和线性期望的使用使得问题更易处理。
解题技巧和信息
对于复杂的图论问题,可以通过图的对称性来简化问题。期望值的计算可以利用线性期望的性质,使得问题转化为求和问题。求极大值时,可以考虑图的特殊结构,例如完全图的顶点划分。
重点词汇
- graph 图
- complete graph 完全图
- edge 边
- vertex 顶点
- expected value 期望值
参考资料
- Bollobás, B. (1998). Modern Graph Theory. Springer. Chap. 1-3.