東北大学 工学研究科 土木工学専攻 2023年2月実施 基礎科目 [1] 微分積分
Author
Description
Kai
1.
\[
\begin{aligned}
\lim_{x \to 0} \left( \frac{a^x + b^x}{2} \right)^{\frac{1}{x}}
&= \lim_{x \to 0} \left( 1 + \frac{\log (ab)}{2} x + O(x^2) \right)^{\frac{1}{x}}
\\
&= e^{\frac{1}{2} \log (ab)}
\\
&= \sqrt{ab}
\end{aligned}
\]
2.
(1)
\[
\begin{aligned}
\mathrm{d} x &= \mathrm{d} r \cos \theta - r \mathrm{d} \theta \sin \theta
\\
\mathrm{d} y &= \mathrm{d} r \sin \theta + r \mathrm{d} \theta \cos \theta
\end{aligned}
\]
(2)
\[
\begin{aligned}
x \mathrm{d} y - y \mathrm{d} x &= r^2 \mathrm{d} \theta
\end{aligned}
\]