Skip to content

大阪大学 基礎工学研究科 電子光科学 (システム創成専攻) 2021年度 電子光科学 [I-2]

Author

Miyake

Description

Kai

(1)

\[ \begin{aligned} u(x) = x^2 , \ \ v(x) = x , \ \ w(x) = 1 \end{aligned} \]

(2)

\[ \begin{aligned} T(u(x)) &= T(x^2) = (x+1)^2 = x^2 + 2x + 1 \\ &= u(x) + 2v(x) + w(x) \\ T(v(x)) &= T(x) = x+1 \\ &= v(x) + w(x) \\ T(w(x)) &= T(1) = 1 \\ &= w(x) \end{aligned} \]

であるから、

\[ \begin{aligned} \begin{pmatrix} T(u(x)) & T(v(x)) & T(w(x)) \end{pmatrix} = \begin{pmatrix} u(x) & v(x) & w(x) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \end{aligned} \]

であり、求める表現行列は、

\[ \begin{aligned} A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \end{aligned} \]

である。

(3)

\(A\) の固有値は \(1\) であり、対応する固有ベクトルは、

\[ \begin{aligned} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{aligned} \]

である。