名古屋大学 情報学研究科 数理情報学専攻 2021年8月実施 問題6 量子力学
Author
Description
Kai
(1)
(2)
\[
\begin{aligned}
\left| \psi_\tau \right\rangle
&=
U(\tau) \left| \psi_0 \right\rangle
\\
&=
\begin{pmatrix} \cos \tau & - \sin \tau \\ \sin \tau & \cos \tau \end{pmatrix}
\begin{pmatrix} 1 \\ 0 \end{pmatrix}
\\
&=
\begin{pmatrix} \cos \tau \\ \sin \tau \end{pmatrix}
\end{aligned}
\]
(3)
\[
\begin{aligned}
\left\langle X \right\rangle_\tau
&=
\left\langle \psi_\tau \right| X \left| \psi_\tau \right\rangle
\\
&=
\begin{pmatrix} \cos \tau & \sin \tau \end{pmatrix}
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\begin{pmatrix} \cos \tau \\ \sin \tau \end{pmatrix}
\\
&= 2 \sin \tau \cos \tau
\\
&= \sin 2 \tau
\end{aligned}
\]
(4)
\(X^2\) は単位行列であるから、
\[
\begin{aligned}
\left\langle X^2 \right\rangle_\tau
&=
\left\langle \psi_\tau | \psi_\tau \right\rangle
\\
&= 1
\\
\therefore \ \
\sigma^2_\tau (X)
&=
\left\langle X^2 \right\rangle_\tau
- \left\langle X \right\rangle_\tau^2
\\
&=
1 - \sin^2 2 \tau
\end{aligned}
\]
(5)
\[
\begin{aligned}
\tau^* = \frac{\pi}{4}
\end{aligned}
\]