九州大学 システム情報科学府 情報理工学専攻・電気電子工学専攻 2024年度 確率・統計
Author
Casablanca, 祭音Myyura
Description
箱の中に \(N_1\) 個の白いボールと \(N_2\) 個の黒いボールがあり, その総数を \(N = N_1 + N_2\) とする。この箱から \(2\) つのボールをランダムに選び, 両方が白いボールである確率は \(1/2\) であるとする。
(1) \(N_2\) が奇数のとき \(N_1\) の最小値を求めよ。
(2) \(N_2\) が偶数のとき \(N_1\) の最小値を求めよ。
(3) \(N\) を値の小さい順に \(3\) つ求めよ。
A box contains \(N_1\) white and \(N_2\) black balls, and the total number of balls is \(N = N_1 + N_2\). When two balls are randomly drawn from the box, the probability that both balls are white is \(1/2\).
(1) Find the minimum value of \(N_1\) when \(N_2\) is an odd number.
(2) Find the minimum value of \(N_1\) when \(N_2\) is an even number.
(3) Find the three smallest values of \(N\).
Kai
Let \(A\) denote the event "both balls are white", then we have
Since \(P(A) = \frac{1}{2}\), we have
(1)
Let \(N_2 = 2k + 1\). Then we have
from which we have
when \(k = 0\), \(N_1\) get the minimum value \(3\).
(2)
Let \(N_2 = 2k\). Then we have
from which we get
when \(k = 3\), \(N_1\) get the minimum value \(15\).
(3)
From (i) and (ii) , we easily know that the larger \(N_1\), the larger \(N_2\) we have and \(8N_2^2 + 1\) must be a number of squares.
Let \(8N_2^2 + 1 = K^2\), we have \(8N_2^2 = (K - 1)(K + 1)\), which implies that \(K\) is odd.
Let \(K = 2p + 1\). Then we have \(2N_2^2 = p(p+1)\). Easy to find that \(p = 1\), \(p = 8\) and \(p = 49\) are three solutions and the corresponding value of \(N\) is \(4\), \(21\) and \(120\).