九州大学 システム情報科学府 情報理工学専攻・電気電子工学専攻 2019年度 複素関数論
Author
Zero
Description
解析関数 \(f(z) = u + iv\) を考える.ただし,\(z = x + iy\) は複素数,\(x\) と \(y\) は実数,\(u\) と \(v\) は実数値関数,\(i = \sqrt{-1}\) である.x と y が極形式 \(x = r\cos\theta\) と \(y = r\sin\theta\) で表されるとき,極形 式のコーシー・リーマンの方程式は以下の式で書けることを示せ.
\[
\frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta},\frac{\partial v}{\partial r} = -\frac{1}{r}\frac{\partial u}{\partial \theta}
\]
Kai
コーシー・リーマンの方程式は以下の式表せる。
\[
\left \{
\begin{align}
&\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{①} \\
&\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{②} \\
\end{align}
\right.
\]
\[
\begin{align}
&\frac{\partial x}{\partial r} = \cos\theta ,\frac{\partial y}{\partial r} = \sin\theta \notag \\
&\frac{\partial x}{\partial \theta} = -r\sin\theta, \notag \\
&\frac{\partial y}{\partial \theta} = r\cos\theta \Leftrightarrow \cos\theta = \frac{1}{r}\frac{\partial y}{\partial \theta} \tag{③}
\end{align}
\]
① の両辺に \(\frac{\partial x}{\partial r} = \cos\theta\) をかける
\[
\begin{aligned}
&\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial r} = \frac{\partial v}{\partial y} \cdot \cos\theta \\
&\frac{\partial u}{\partial r} = \frac{\partial v}{\partial y} \cdot \cos\theta \\
&\frac{\partial u}{\partial r} = \frac{\partial v}{\partial y} \cdot \frac{1}{r}\frac{\partial v}{\partial \theta} \\
\therefore &\frac{\partial u}{\partial r} = \frac{1}{r} \cdot \frac{\partial v}{\partial \theta}
\end{aligned}
\]
② の両辺に \(-\frac{\partial x}{\partial r} = -\cos\theta\) をかける
\[
\begin{aligned}
&\frac{\partial u}{\partial y} \cdot (-\cos\theta) = \frac{\partial v}{\partial x} \cdot \frac{\partial x}{\partial r} \\
&-\frac{\partial u}{\partial y} \cdot \cos\theta = \frac{\partial v}{\partial r} \\
&\frac{\partial v}{\partial r} = -\frac{\partial u}{\partial y} \cdot \cos\theta \\
&\frac{\partial v}{\partial r} = -\frac{\partial u}{\partial y} \cdot \frac{1}{r} \frac{\partial u}{\partial \theta} \\
\therefore &\frac{\partial v}{\partial r} = -\frac{1}{r} \cdot \frac{\partial u}{\partial \theta}
\end{aligned}
\]