Skip to content

九州大学 システム情報科学府 情報理工学専攻・電気電子工学専攻 2019年度 解析学・微積分

Author

Yu, Miyake

Description

微分方程式

\(2\) つの関数 \(x(t),y(t)\) について, 次の連立微分方程式を解け。

\[ \left\{ \begin{aligned} &\frac{\text{d}x}{\text{d}t} = x - 5y\\ &\frac{\text{d}y}{\text{d}t} = x - 3y\\ &x(0) = 3,y(0) = 1 \end{aligned} \right. \]

複素関数論

解析関数 \(f(z) = u + iv\) を考える。ただし, \(z = x + iy\) は複素数, \(x\)\(y\) は実数, \(u\)\(v\) は実数値関数, \(i = \sqrt{-1}\) である。 \(x\)\(y\) が極形式 \(x = r\cos \theta\)\(y = r\sin \theta\) で表されるとき, 極形式のコーシー \(\cdot\) リーマンの方程式は以下の式で書けることを示せ。

\[ \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} , \frac{\partial v}{\partial r} = -\frac{1}{r}\frac{\partial u}{\partial \theta} \]

Kai

微分方程式

\[ \frac{\text{d}x}{\text{d}t} = x - 5y \Rightarrow y = \frac{1}{5}\big(x - \frac{\text{d}x}{\text{d}t}\big) \]
\[ \frac{\text{d}y}{\text{d}t} = x - 3y \text{ に代入して,} \]
\[ \frac{\text{d}^2x}{\text{d}t^2} + 2\frac{\text{d}x}{\text{d}t} + 2x = 0 \]
\[ \lambda^2 + 2\lambda + 2 = 0 \Rightarrow \lambda = -1 \pm i \]
\[ x = e^{-t}(c_1\cos t + c_2\sin t) \]
\[ \frac{\text{d}x}{\text{d}t} = -e^{-t}[(c_1 -c_2)\cos t + (c_1 + c_2)\sin t] \]
\[ y = \frac{1}{5}e^{-t}[(2c_1 - c_2)\cos t + (c_1 + 2c_2)\sin t] \]
\[ \left\{ \begin{aligned} &x(0) = c_1 = 3 \\ &y(0) = \frac{1}{5}(2c_1 - c_2) = 1 \end{aligned} \right. \Rightarrow \left\{ \begin{aligned} c_1 = 3\\ c_2 = 1 \end{aligned} \right. \]
\[ \left\{ \begin{aligned} x &= e^{-t}(3\cos t + \sin t) \\ y &= e^{-t}(\cos t + \sin t) \end{aligned} \right. \]

複素関数論

\(x = r \cos \theta, y = r \sin \theta\) より、

\[ \begin{aligned} \frac{\partial x}{\partial r} = \cos \theta , \ \ \frac{\partial x}{\partial \theta} = -r \sin \theta , \ \ \frac{\partial y}{\partial r} = \sin \theta , \ \ \frac{\partial y}{\partial \theta} = r \cos \theta \end{aligned} \]

なので、

\[ \begin{aligned} \frac{\partial u}{\partial r} &= \frac{\partial x}{\partial r} \frac{\partial u}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial u}{\partial y} \\ &= \cos \theta \frac{\partial u}{\partial x} + \sin \theta \frac{\partial u}{\partial y} , \\ \frac{\partial u}{\partial \theta} &= \frac{\partial x}{\partial \theta} \frac{\partial u}{\partial x} + \frac{\partial y}{\partial \theta} \frac{\partial u}{\partial y} \\ &= -r \sin \theta \frac{\partial u}{\partial x} + r \cos \theta \frac{\partial u}{\partial y} , \\ \frac{\partial v}{\partial r} &= \frac{\partial x}{\partial r} \frac{\partial u}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial u}{\partial y} \\ &= \cos \theta \frac{\partial v}{\partial x} + \sin \theta \frac{\partial v}{\partial y} , \\ \frac{\partial v}{\partial \theta} &= \frac{\partial x}{\partial \theta} \frac{\partial u}{\partial x} + \frac{\partial y}{\partial \theta} \frac{\partial u}{\partial y} \\ &= -r \sin \theta \frac{\partial v}{\partial x} + r \cos \theta \frac{\partial v}{\partial y} \end{aligned} \]

である。

さらに、コーシー・リーマンの方程式

\[ \begin{aligned} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \ \ \frac{\partial u}{\partial y} = - \frac{\partial v}{\partial x} \end{aligned} \]

を使うと、

\[ \begin{aligned} \frac{\partial u}{\partial r} &= \cos \theta \frac{\partial u}{\partial x} + \sin \theta \frac{\partial u}{\partial y} \\ &= \cos \theta \frac{\partial v}{\partial y} - \sin \theta \frac{\partial v}{\partial x} \\ &= \frac{1}{r} \frac{\partial v}{\partial \theta} , \\ \frac{\partial v}{\partial r} &= \cos \theta \frac{\partial v}{\partial x} + \sin \theta \frac{\partial v}{\partial y} \\ &= - \cos \theta \frac{\partial u}{\partial y} + \sin \theta \frac{\partial u}{\partial x} \\ &= - \frac{1}{r} \frac{\partial u}{\partial \theta} \end{aligned} \]

を得る。