Skip to content

九州大学 システム情報科学府 情報理工学専攻・電気電子工学専攻 2016年度 複素関数論

Author

Zero

Description

複素関数 \(f(z) = \frac{\pi\cot\pi z}{z^2 + a^2}\) を考える。ただし, \(a > 0\) とする。次の各問に答えよ。

(1) \(f(z)\) のすべての極における留数を求めよ。

(2) 図に示す閉路 \(C_N\) に沿った複素積分 \(\oint_{C_N} f(z)dz\) を考える。ただし, \(N\) は自然数とする。\(\lim_{N \rightarrow \infty}\oint_{C_N}f(z)dz\) の値を求めよ。

(3) \(\lim_{N \rightarrow \infty}\oint_{C_N}f(z)dz\) の値を用して, \(\sum_{n=1}^{\infty}\frac{1}{n^2 + a^2} = \frac{\pi}{2a}\coth \pi a - \frac{1}{2a^2}\) を示せ。


Consider the complex function \(f(z) = \frac{\pi\cot\pi z}{z^2 + a^2}\), where \(a > 0\). Answer the following questions.

(1) Find the residues of \(f(z)\) at all its poles.

(2) Consider the complex integral \(\oint_{C_N} f(z)dz\), where \(C_N\) is a closed path as shown in the figure and \(N\) is a natural number. Find the value of \(\lim_{N \rightarrow \infty}\oint_{C_N}f(z)dz\).

(3) Using the value of \(\lim_{N \rightarrow \infty}\oint_{C_N}f(z)dz\), prove that \(\sum_{n=1}^{\infty}\frac{1}{n^2 + a^2} = \frac{\pi}{2a}\coth \pi a - \frac{1}{2a^2}\).

Kai

(1)

\[ \begin{aligned} f(z) &= \frac{\pi \cot \pi z}{z^2 + a^2} \\ &= \frac{\pi \cos \pi z}{(z^2 + a^2)\sin\pi z} \\ &= \frac{\pi \cos \pi z}{(z + ai)(z - ai)\sin \pi z} \end{aligned} \]

\(z = ai,-ai,n\) (\(n\) は整数)

\(\text{Res}_{z = ai}f(z)\) を求める。正則な関数 \(g(z) = \frac{\pi \cos \pi z}{(z + ai)\sin \pi z}\) とする。

\[ \begin{aligned} \text{Res}_{z = ai}f(z) &= g(ai)\\ &= \frac{\pi \cos \pi(ai)}{2ai \cdot \sin\pi(ai)} \\ &= \frac{\pi \cdot \cosh(\pi a)}{2ai \cdot i\sinh(\pi a)} \\ &= -\frac{\pi}{2a} \coth(\pi a) \end{aligned} \]

次に、\(\text{Res}_{z = -ai}f(z)\) を求める。\(g(z) = \frac{\pi \cos\pi z}{(z - ai)\sin\pi z}\)

\[ \begin{aligned} \text{Res}_{z = -ai}f(z) &= g(-ai)\\ &= \frac{\pi\cos\pi(-ai)}{(-2ai)\sin\pi(-ai)} \\ &= \frac{\pi\cosh(-\pi a)}{-2ai \cdot i \sinh(-\pi a)} \\ &= \frac{\pi}{2a}\coth(-\pi a) \\ &= -\frac{\pi}{2a}\coth \pi a \end{aligned} \]

最後に、\(\text{Res}_{z = n}f(z)\) を求める。

\[ \begin{aligned} \text{Res}_{z = n}f(z) &= \lim_{z \rightarrow n} \pi \cdot \frac{1}{\{(z^2 + a^2) \tan \pi z\}'} \\ &= \lim_{z \rightarrow n} \pi \cdot \frac{1}{2z\tan \pi z + (z^2 + a^2) \cdot \frac{1}{\cos^2\pi z} \cdot \pi} \\ &= \lim_{z \rightarrow n} \pi \cdot \frac{\cos^2\pi z}{2z\sin\pi z \cos\pi z + \pi(z^2 + a^2)} \\ &= \lim_{z \rightarrow n} \pi \cdot \frac{\cos^2 \pi z}{z \sin 2\pi z + \pi(z^2 + a^2)} \\ &= \lim_{z \rightarrow n} \pi \cdot \frac{1}{\pi(n^2 + a^2)} \\ &= \frac{1}{n^2 + a^2} \end{aligned} \]

(2)

\[ \begin{aligned} \oint_{C_N}f(x)dx &= \int_{-N}^N \frac{\pi \cot\pi(x - iN)}{(x - iN)^2 + a^2}dx \\ &\quad + \int_{N}^{-N} \frac{\pi\cot\pi(x + iN)}{(x + iN)^2 + a^2}dx \\ &\qquad + \int_{-N}^N \frac{\pi\cot\pi(N + iy)}{(N + iy)^2 + a^2}dy \\ &\qquad \quad + \int_{N}^{-N} \frac{\pi\cot\pi(-N + iy)}{(-N + iy)^2 + a^2}dy \end{aligned} \]
\[ \begin{aligned} \bigg|\int_{-N}^N\frac{\pi \cot\pi(x - iN)}{(x - iN)^2 + a^2}dx\bigg| &= \bigg|\int_{N}^{-N} \frac{\pi\cot\pi(-N + iy)}{(-N + iy)^2 + a^2}dy\bigg| \\ \bigg|\int_{N}^{-N} \frac{\pi\cot\pi(x + iN)}{(x + iN)^2 + a^2}dx\bigg| &= \bigg|\int_{-N}^N \frac{\pi\cot\pi(N + iy)}{(N + iy)^2 + a^2}dy\bigg| \end{aligned} \]

より、

\[ \lim_{N \rightarrow \infty}\oint_{C_N}f(x)dx = 0 \]

(3)

留数定理から、

\[ \begin{aligned} \lim_{N \rightarrow \infty}\oint_{C_N}f(z)dz &= 2\pi i \bigg(\sum_{n = -\infty}^{\infty} \frac{1}{n^2 + a^2} - \frac{\pi}{a}\coth \pi a\bigg) \\ 0 &= 2\pi i \bigg(\sum_{n = -\infty}^{\infty}\frac{1}{n^2 + a^2} - \frac{\pi}{a}\coth\pi a\bigg) \\ \sum_{n = -\infty}^{\infty} \frac{1}{n^2 + a^2} &= \frac{\pi}{a}\coth \pi a \\ \sum_{n = -\infty}^{-1}\frac{1}{n^2 + a^2} + \frac{1}{a^2} + \sum_{n = 1}^{\infty}\frac{1}{n^2 + a^2} &= \frac{\pi}{a} \coth\pi a \\ 2\sum_{n = 1}^{\infty}\frac{1}{n^2 + a^2} &= \frac{\pi}{a}\coth\pi a - \frac{1}{a^2} \\ \sum_{n = 1}^{\infty}\frac{1}{n^2 + a^2} &= \frac{\pi}{2a}\coth\pi a - \frac{1}{2a^2} \end{aligned} \]