Kyoto-University
京都大学 情報学研究科 知能情報学専攻 2023年8月実施 専門科目 S-5
Author
祭音Myyura
Description
設問1
2次元信号 \(f(x, y)\) の2次元フーリエ変換を
\[
F(u, v) = \iint_{-\infty}^{\infty} f(x, y) e^{-j(ux+vy)} dxdy
\]
とする。ただし \(j\) は虚数単位である。
また \(f(x, y)\) のある軸 \(l\) への投影を、軸 \(l\) 上の各点における、\(l\) に垂直な直線に沿った \(f(x, y)\) の線積分とする。以下の問いに答えよ。
(1) \(f(x, y)\) を \(x\) 軸に投影した信号 \(p(x)\) の1次元フーリエ変換を、\(F(u, v)\) を用いて表せ。
(2) 原点を中心として \(x\) 軸を反時計回りに角度 \(\theta\) 回転して得られた \(s\) 軸上に \(f(x, y)\) を投影した信号を \(p_\theta(s)\) とする。
\(p_\theta(s)\) の \(s\) についての1次元フーリエ変換を \(F(u, v)\) を用いて表せ。
設問2
長さ \(N\) の離散時間信号 \(x[n]\) の \(N\) 点離散フーリエ変換 \(X[k]\) を
\[
X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad W_N = e^{-j\frac{2\pi}{N}}
\]
とする。ただし \(j\) は虚数単位、\(n, k = 0, \ldots, N-1\) であり、\(N\) は正の偶数とする。以下の問いに答えよ。
(1) 観測系列 \(x_0[n] = \{x_0[0], x_0[1], x_0[2], x_0[3]\} = \{1, 2, 1, -2\}\) を、ある信号を 4000Hz で等間隔にサンプリングすることで得たとする。
\(x_0[n]\) の4点離散フーリエ変換を計算し、周波数(Hz)に対応する振幅スペクトルおよび位相スペクトルを図示せよ。
(2) 2つの要素数 \(N\) の実数値系列 \(x_1[n]\) および \(x_2[n]\) の \(N\) 点離散フーリエ変換を、1回の \(N\) 点離散フーリエによって計算する方法を導出せよ。
(3) 要素数 \(2N\) の実数値系列の \(2N\) 点離散フーリエ変換を、1回の \(N\) 点離散フーリエ変換によって計算する方法を導出せよ。
Kai
設問1
(1)
By the definition of projection, we have
\[
p(x) = \int_{-\infty}^{\infty}f(x,y)dy
\]
hence the 1D Fourier transform of \(p(x)\) is
\[
\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}f(x,y)dy\right)e^{-jux}dx
= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j(ux+0\cdot y)}dxdy
= F(u, 0)
\]
(2)
Let \((s,t)\) denote the coordinates obtained by rotating \((x, y)\) counterclockwise by an angle \(\theta\) . Then we have
\[
\begin{pmatrix}
s\\
t
\end{pmatrix}
=
\begin{pmatrix}
\cos\theta&-\sin\theta\\
\sin\theta&\cos\theta
\end{pmatrix}
\begin{pmatrix}
x\\
y
\end{pmatrix} \Rightarrow
\begin{cases}
x = s\cos\theta-t\sin\theta\\
y = s\sin\theta+t\cos\theta
\end{cases}
\]
by calculating the Jacobian determinant
\[
J =
\begin{vmatrix}
\cos\theta&-\sin\theta\\
\sin\theta&\cos\theta
\end{vmatrix}
= \cos^{2}\theta+\sin^{2}\theta = 1
\]
we know that \(f(x,y)dxdy{=}f(s,t)dsdt\) . Hence the 1D Fourier transform of \(p_{\theta}(x)\) is
\[
\begin{aligned}
\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}f(s,t)dt\right)e^{-jus}ds
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(s,t)e^{-j(us+0\cdot t)}dsdt\\
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j(u\cos\theta x+(-u\sin\theta)y)}dxdy\\
&= F(u\cos\theta, -u\sin\theta)
\end{aligned}
\]
設問2
(1)
The 4-point discrete Fourier transform of \(x_0[n]\) :
\[
\begin{pmatrix}
X[0]\\
X[1]\\
X[2]\\
X[3]
\end{pmatrix}
=
\begin{pmatrix}
W_{4}^{0}&W_{4}^{0}&W_{4}^{0}&W_{4}^{0}\\
W_{4}^{0}&W_{4}^{1}&W_{4}^{2}&W_{4}^{3}\\
W_{4}^{0}&W_{4}^{2}&W_{4}^{4}&W_{4}^{6}\\
W_{4}^{0}&W_{4}^{3}&W_{4}^{6}&W_{4}^{9}
\end{pmatrix}
\begin{pmatrix}
x[0]\\
x[1]\\
x[2]\\
x[3]
\end{pmatrix}
=
\begin{pmatrix}
1&1&1&1\\
1&-j&-1&j\\
1&-1&1&-1\\
1&j&-1&-j
\end{pmatrix}
\begin{pmatrix}
1\\
2\\
1\\
-2
\end{pmatrix}
=
\begin{pmatrix}
2\\
-4j\\
2\\
4j
\end{pmatrix}
\]
Fig. magnitude and phase spectra
(2)
\[
\begin{aligned}
X[k]
&= \sum_{n=0}^{N-1}x[n]W_{N}^{kn}\\
&= \sum_{n=0}^{N-1}x[n]\cos\left(2\pi-\frac{2\pi kn}{N}\right)
+ j\sum_{n=0}^{N-1}x[n]\sin\left(2\pi-\frac{2\pi kn}{N}\right)\\
&= \sum_{n=0}^{N-1}x[n]\cos\frac{2\pi n(N-k)}{N}
+ j\sum_{n=0}^{N-1}x[n]\sin\frac{2\pi n(N-k)}{N}\\
&= \text{Re } X[N-k]-j\text{Im } X[N-k]
\end{aligned}
\]
which implies that
\[
\begin{align}
\begin{cases}
\text{Re } X[k] = \text{Re } X[N-k]\\
\text{Im } X[k] = -\text{Im } X[N-k]
\end{cases} \tag{j}
\end{align}
\]
Let \(y[n] = x_{1}[n]+j x_{2}[n]\) . Let \(X_{1}[k],X_{2}[k],Y[k]\) denote the discrete Fourier transform of \(x_{1}[n],x_{2}[n],y_{n}\) , respectively. Then,
\[
\begin{align}
Y[k]
&= \sum_{n=0}^{N-1}(x_{1}[n]+j x_{2}[n])W_{N}^{kn} \nonumber \\
&= \sum_{n=0}^{N-1}x_{1}[n]W_{N}^{kn}+j\sum_{n=0}^{N-1}x_{2}[n]W_{N}^{kn} \nonumber \\
&= X_{1}[k]+iX_{2}[k] \nonumber \\
&= (\text{Re } X_{1}[k]+j\text{Im } X_{1}[k])+j(\text{Re } X_{2}[k]+j \text{Im } X_{2}[k]) \nonumber \\
&= (\text{Re } X_{1}[k]-\text{Im } X_{2}[k])+j(\text{Im } X_{1}[k]+\text{Re } X_{2}[k]) \tag{ii}
\end{align}
\]
By (i) we know that
\[
\begin{align}
Y[N-k]
&= (\text{Re } X_{1}[N-k]-\text{Im } X_{2}[N-k])+j(\text{Im } X_{1}[N-k]+\text{Re } X_{2}[N-k]) \nonumber \\
&= (\text{Re } X_{1}[k]+\text{Im } X_{2}[k])+j(-\text{Im } X_{1}[k]+\text{Re } X_{2}[k]) \tag{iii}
\end{align}
\]
and by (ii), (iii) we have
\[
\begin{align}
\begin{cases}
\displaystyle
X_{1}[k] = \frac{\text{Re } Y[k]+\text{Re } Y[N-k]}{2}+j\frac{\text{Im } Y[k]-\text{Im } Y[N-k]}{2}\\
\displaystyle
X_{2}[k] = \frac{\text{Im } Y[k]+\text{Im } Y[N-k]}{2}-j\frac{\text{Re } Y[k]-\text{Re } Y[N-k]}{2}
\end{cases} \tag{iv}
\end{align}
\]
(3)
By definition we know that \(W_{N}^{2kn}{=}W_{N/2}^{kn}\) and \(W_{N}^{kN}{=}1\) , hence we have
\[
\begin{aligned}
X[2k]
&= \sum_{n=0}^{N-1}x[n]W_{2N}^{2kn}+\sum_{n=N}^{2N-1}x[n]W_{2N}^{2kn}\\
&= \sum_{n=0}^{N-1}x[n]W_{2N}^{2kn}+\sum_{n=0}^{N-1}x[n+N]W_{2N}^{2k(n+N)}\\
&= \sum_{n=0}^{N-1}x[n]W_{N}^{kn}+\sum_{n=0}^{N-1}x[n+N]W_{N}^{k(n+N)}\\
&= \sum_{n=0}^{N-1}x[n]W_{N}^{kn}+\sum_{n=0}^{N-1}x[n+N]W_{N}^{kn}\\
&= \sum_{n=0}^{N-1}(x[n]+x[n+N])W_{N}^{kn}\\
\end{aligned}
\]
Similarly, since \(W_{2N}^{N}{=}{-}1\) , we have
\[
\begin{aligned}
X[2k+1]
&= \sum_{n=0}^{N-1}x[n]W_{2N}^{(2k+1)n}+\sum_{n=0}^{N-1}x[n+N]W_{2N}^{(2k+1)(n+N)}\\
&= \sum_{n=0}^{N-1}\left(x[n]+x[n+N]W_{2N}^{(2k+1)N}\right)W_{2N}^{(2k+1)n}\\
&= \sum_{n=0}^{N-1}\left(x[n]+x[n+N]W_{2N}^{N}\right)W_{2N}^{2kn}W_{2N}^{n}\\
&= \sum_{n=0}^{N-1}\left(x[n]-x[n+N]\right)W_{2N}^{n}W_{N}^{kn}
\end{aligned}
\]
Therefore, let \(y[n]{=}x[n]{+}x[n+N]\) and \(z[n]{=}x[n]{-}x[n+N]\) , we have
\[
\begin{aligned}
\begin{cases}
X[2k] = \sum_{n=0}^{N-1}y[n]W_{N}^{kn}\\
X[2k] = \sum_{n=0}^{N-1}y[n]W_{2N}^{n}W_{N}^{kn}
\end{cases}
\end{aligned}
\]
which implies that \(2N\) -point discrete Fourier transforms can be obtained using two executions of the \(N\) -point Fourier transform.
By using the result from the previous question (2), it has been demonstrated that the \(N\) -point discrete Fourier transforms of two different sequences can be obtained using a single execution of the \(N\) -point Fourier transform, thereby showing that a \(2N\) -point discrete Fourier transform can be obtained using a single execution of the \(N\) -point Fourier transform.