Kyoto-University
京都大学 情報学研究科 知能情報学専攻 2022年8月実施 専門科目 S-5
Author
realball
Description
Suppose that the Fourier transform \(\mathcal{F}[f(x)]\) of a function \(f(x)\) and the Fourier integral representation of the Dirac delta function \(\delta(x)\) are given by the following formulae, where \(x\) and \(k\) are real numbers, and \(i=\sqrt{-1}\) . Answer the following questions.
\[
\begin{align}
\mathcal{F}[f(x)]&=F(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)\mathrm{e}^{-ikx}\text{d}x \tag{i}\\
\delta(x)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathrm{e}^{ikx}\text{d}k \tag{ii}
\end{align}
\]
Q.1
Compute the Fourier transform of the function given below, where \(\omega\) is a real number.
(1) \(f_1(x)=\left\{\begin{array}{ll}0&(x<0) \\ 1&(0\le x\le2)\\0&(x>2)\end{array}\right.\)
(2) \(f_{2}(x)=\cos^{2}\omega x\)
Q.2
Compute the Fourier transform of function \(f_3(x)\) by following the steps below.
\[
f_3(x)=\left\{\begin{array}{l}0 \ \ (x<-2)\\
x+2 \ \ (-2\leq x<0)\\
2-x \ \ (0\leq x<2)\\
0 \ \ (x\geq2)\end{array}\right.
\]
(1) Derive the following equation concerning convolution operation.
\[
\mathcal{F}[f(x)*g(x)]=\mathcal{F}\left[\int_{-\infty}^{\infty}f(\tau)g(x-\tau)\text{d}\tau\right]=\sqrt{2\pi}\mathcal{F}[f(x)]\mathcal{F}[g(x)]
\]
(2) Find function \(f_4(x)\) whose convolution with the above \(f_1(x)\) satisfies \(f_3(x)=f_1(x) * f_4(x)\) , and explain how the convolution gives \(f_3(x)\) .
(3) Compute \(\mathcal{F}[f_3(x)]\) .
Kai
Q.1
(1)
\[
F[f_1(x)]=\frac{1}{\sqrt{2\pi}} \left( \frac{e^{-2i k} - 1}{i k} \right)
\]
(2)
\[
F[f_2(x)]=\frac{\sqrt{2\pi}}{2}\delta(-k)+\frac{\sqrt{2\pi}}{4}\delta(2\omega-k)+\frac{\sqrt{2\pi}}{4}\delta(-2\omega-k)
\]
Q.2
(1)
\[
\begin{aligned}
\mathcal{F}[f(x)\ast g(x)]
&= \mathcal{F}
\left[\int_{-\infty}^{\infty} f(\tau) g(x - \tau) d\tau \right] \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}f(\tau) g(x - \tau)d\tau\cdot e^{-ikx} dx \\
&= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(\tau)d\tau \int_{-\infty}^{\infty}g(x-\tau)e^{-ikx}dx\\
&= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} g(t) e^{-ikt} dt \cdot \int_{-\infty}^{\infty} f(\tau) e^{-ik\tau} d\tau \\
&= \sqrt{2\pi}\mathcal{F}[f(x)]\mathcal{F}[g(x)]
\end{aligned}
\]
(2)
\[
f_4(x)=\begin{cases}
0 & x < -2 \\
1 & -2\leq x \leq 0\\
0 & x > 0
\end{cases}
\]
\[
f_3(x)=f_1(x)\ast f_4(x) =\int_{0}^{2}f_4(x-\tau)d\tau
\]
(3)
\[
\mathcal{F}[f_3(x)]=\frac{2\sin^2k}{-\sqrt{2\pi}k^2}
\]