Kyoto-University
京都大学 情報学研究科 知能情報学専攻 2022年8月実施 専門科目 S-5
Author
realball
Description
Suppose that the Fourier transform \(\mathcal{F}[f(x)]\) of a function \(f(x)\) and the Fourier integral representation of the Dirac delta function \(\delta(x)\) are given by the following formulae, where \(x\) and \(k\) are real numbers, and \(i=\sqrt{-1}\) . Answer the following questions.
\[
\begin{align}
\mathcal{F}[f(x)]&=F(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)\mathrm{e}^{-ikx}\text{d}x \tag{i}\\
\delta(x)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathrm{e}^{ikx}\text{d}k \tag{ii}
\end{align}
\]
Q.1
Compute the Fourier transform of the function given below, where \(\omega\) is a real number.
(1) \(f_1(x)=\left\{\begin{array}{ll}0&(x<0) \\ 1&(0\le x\le2)\\0&(x>2)\end{array}\right.\)
(2) \(f_{2}(x)=\cos^{2}\omega x\)
Q.2
Compute the Fourier transform of function \(f_3(x)\) by following the steps below.
\[
f_3(x)=\left\{\begin{array}{l}0 \ \ (x<-2)\\
x+2 \ \ (-2\leq x<0)\\
2-x \ \ (0\leq x<2)\\
0 \ \ (x\geq2)\end{array}\right.
\]
(1) Derive the following equation concerning convolution operation.
\[
\mathcal{F}[f(x)*g(x)]=\mathcal{F}\left[\int_{-\infty}^{\infty}f(\tau)g(x-\tau)\text{d}\tau\right]=\sqrt{2\pi}\mathcal{F}[f(x)]\mathcal{F}[g(x)]
\]
(2) Find function \(f_4(x)\) whose convolution with the above \(f_1(x)\) satisfies \(f_3(x)=f_1(x) * f_4(x)\) , and explain how the convolution gives \(f_3(x)\) .
(3) Compute \(\mathcal{F}[f_3(x)]\) .
Kai
Q.1
(1)
\[
\begin{aligned}
\mathcal{F}\left[f_{1}(x)\right]
&= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx\\
&= \frac{1}{\sqrt{2\pi}}\int_{0}^{2}e^{-ikx}dx\\
&= -\frac{1}{ik\sqrt{2\pi}}\left[e^{-ikx}\right]_{0}^{2}\\
&= \frac{1}{ik\sqrt{2\pi}}\left(1-e^{-2ik}\right)
\end{aligned}
\]
applying the Euler formula,
\[
\begin{aligned}
\mathcal{F}\left[f_{1}(x)\right]
&= e^{-ik}\frac{2}{k\sqrt{2\pi}}\frac{e^{ik}-e^{-ik}}{2i}\\
&= e^{-ik}\sqrt{\frac{2}{\pi}}\frac{\sin k}{k}
\end{aligned}
\]
(2)
\[
\begin{aligned}
\mathcal{F}(f_{2}(x)) &= \mathcal{F}\left(\cos^{2}\omega x\right)\\
&= \frac{1}{2}\mathcal{F}\left(1+\cos 2\omega x\right)\\
&= \frac{1}{2}\left(\mathcal{F}(1) + \mathcal{F}\left(\cos 2\omega x\right)\right)
\end{aligned}
\]
\[
\sqrt{2\pi}\delta(k) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-ikx}dx \Rightarrow
\mathcal{F}(1) = \sqrt{2\pi}\delta(k)
\]
\[
\begin{aligned}
\mathcal{F}\left[\cos 2\omega x\right]
&= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}(\cos 2\omega x)e^{-ikx}dx\\
&= \frac{1}{2\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(e^{i2\omega x}+e^{-i2\omega x}\right) e^{-ikx}dx\\
&= \frac{1}{2\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(e^{-i(k-2\omega)x}+e^{-i(k+2\omega)x}\right)dx\\
&= \frac{1}{2}\cdot\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-i(k-2\omega)x}dx+\frac{1}{2}\cdot\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-i(k+2\omega)x}dx\\
&= \frac{1}{2}\cdot \sqrt{2\pi}\delta(k-2\omega)+\frac{1}{2}\cdot \sqrt{2\pi}\delta(k+2\omega)\\
&= \frac{\sqrt{2\pi}}{2}\left(\delta(k-2\omega)+\delta(k+2\omega)\right)
\end{aligned}
\]
Hence
\[
\mathcal{F}(f_{2}(x)) = \frac{\sqrt{2\pi}}{4}\left(\delta(k-2\omega)+2\delta(k)+\delta(k+2\omega)\right)
\]
Q.2
(1)
\[
\begin{aligned}
\mathcal{F}\left[f(x)\ast g(x)\right] &= \mathcal{F}\left[\int_{-\infty}^{\infty}f(\tau)g(x-\tau)d\tau\right]\\
&= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}f(\tau)g(x-\tau)d\tau\right)e^{-ikx}dx\\
&= \int_{-\infty}^{\infty}f(\tau)\left(\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}g(x-\tau)e^{-ikx}dx\right)d\tau\\
&= \int_{-\infty}^{\infty}f(\tau)e^{-ik\tau}\left(\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}g(x-\tau)e^{-ik(x-\tau)}dx\right)d\tau\\
&= \int_{-\infty}^{\infty}f(\tau)\left(\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}g(y)e^{-iky}dy\right)d\tau\\
&= \int_{-\infty}^{\infty}f(\tau)\mathcal{F}\left[g(x)\right]d\tau\\
&= \int_{-\infty}^{\infty}f(\tau)d\tau\cdot\mathcal{F}\left[g(x)\right]\\
&= \sqrt{2\pi}\mathcal{F}\left[g(x)\right]\mathcal{F}\left[g(x)\right]
\end{aligned}
\]
(2)
\[
f_4(x)=\begin{cases}
0 & x < -2 \\
1 & -2\leq x \leq 0\\
0 & x > 0
\end{cases}
\]
\[
f_3(x)=f_1(x)\ast f_4(x) =\int_{0}^{2}f_4(x-\tau)d\tau
\]
(3)
\[
\begin{aligned}
\mathcal{F}\left[f_{3}(x)\right]
&= \mathcal{F}\left[f_{1}(x)\ast f_{4}(x)\right]\\
&= \mathcal{F}\left[f_{1}(x)\ast f_{1}(x+2)\right]\\
&= \sqrt{2\pi}\mathcal{F}\left[f_{1}(x)\right]\mathcal{F}\left[f_{1}(x+2)\right]\\
&= \sqrt{2\pi}\mathcal{F}\left[f_{1}(x)\right]\left(e^{2ik}\mathcal{F}\left[f_{1}(x)\right]\right)\\
&= \sqrt{2\pi}e^{2ik}\left(\mathcal{F}\left[f_{1}(x)\right]\right)^{2}\\
&= \sqrt{2\pi}e^{2ik}\left(e^{-ik}\sqrt{\frac{2}{\pi}}\frac{\sin k}{k}\right)^{2}\\
&= 2\sqrt{\frac{2}{\pi}}\left( \frac{\sin k}{k} \right)^{2}
\end{aligned}
\]