Skip to content

京都大学 情報学研究科 知能情報学専攻 2022年8月実施 情報学基礎 F1-1

Author

Isidore

Description

Kai

設問1

\[ A= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -7 & 1 & 0 & 0 & 0 \\ -5 & 2 & 1 & 0 & 0 \\ 7 & -4 & -4 & 1 & 0 \\ -2 & 0 & -4 & -9 & 1 \end{bmatrix} \begin{bmatrix} -6 & -9 & -2 & 7 & -9 \\ 0 & -4 & -7 & -4 & 7 \\ 0 & 0 & -4 & 8 & -1 \\ 0 & 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \]

設問2

(1)

\[ Q\bar{Q} = (a^2+b^2+c^2+d^2)E \]

(2)

\[ I^2 = -E \Rightarrow I^{-1} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ \end{bmatrix} \]
\[ Q\bar{Q} = (a^2+b^2+c^2+d^2)E \Rightarrow Q^{-1} = \frac{1}{a^2+b^2+c^2+d^2} \begin{bmatrix} a & -b & -c & d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \\ \end{bmatrix} \]

(3)

The complete proving is to use \((a, b, c, d)\) to represent all the \(Q\)s below with their calculations, which is easy but tedious.

  • (a)
\[ \forall Q_1, Q_2 \in H, Q_1 + Q_2 \in H \]
  • (b)
\[ \forall Q_1, Q_2 \in H, Q_1 + Q_2 = Q_2 + Q_1 \]
  • (c)
\[ \forall Q_1, Q_2, Q_3 \in H, (Q_1 + Q_2) + Q_3 = Q_1 + (Q_2 + Q_3) \]
  • (d)
\[ \exists Q_0 \in H, \forall Q \in H, Q_0 + Q = Q \]
  • (e)
\[ \forall Q \in H, \exists \hat{Q} \in H, Q + \hat{Q} = Q_0 \]
  • (f)
\[ \forall Q_1, Q_2 \in H, Q_1Q_2 \in H \]
  • (g)
\[ \forall Q_1, Q_2, Q_3 \in H, (Q_1Q_2)Q_3 = Q_1(Q_2Q_3) \]
  • (h)
\[ \forall Q_1, Q_2, Q_3 \in H, (Q_1 + Q_2)Q_3 = Q_1Q_3 + Q_2Q_3 \]
  • (i)
\[ \exists Q_1, Q_2 \in H, Q_1Q_2 \neq Q_2Q_1 \]