Skip to content

京都大学 情報学研究科 知能情報学専攻 2022年8月実施 情報学基礎 F1-1

Author

Isidore, 祭音Myyura

Description

設問1

以下の行列 \(A\) に対して、\(A = LU\) を満たす下三角行列 \(L\) と上三角行列 \(U\) を求めよ。ただし \(L\) の対角成分はすべて 1 とする。

\[ A = \begin{pmatrix} -6 & -9 & -2 & 7 & -9 \\ 42 & 59 & 7 & -53 & 56 \\ 30 & 37 & -8 & -35 & 30 \\ -42 & -47 & 30 & 35 & -33 \\ 12 & 18 & 20 & -64 & 43 \end{pmatrix} \]

設問2

四元数の実 4 次正方行列表現における基底元は以下のように定義される。

\[ E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ I = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \]
\[ J = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \ K = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \]

以下の問いに答えよ。次の等式を用いてもよい:

\[ IJ = K, \ JK = I, \ KI = J, \ JI = -K, \ KJ = -I, \ IK = -J, \]
\[ I^2 = J^2 = K^2 = IJK = -E \]

(1) \((a, b, c, d) \in \mathbb{R}^4\) とし、\(Q = aE + bI + cJ + dK\), \(\overline{Q} = aE - bI - cJ - dK\) として \(Q\overline{Q}\) を求めよ。

(2) \(I^{-1}\)\(Q^{-1}\) を求めよ。ただし \((a, b, c, d) \neq 0\) とする。

(3) 実 4 次正方行列の集合 \(M\) は非可換環である。この部分集合 \(H = \{Q \mid \forall(a, b, c, d)\}\) も非可換環であるための以下の必要条件を証明せよ: - (a) \(H\) は加法に対して閉じている。 - (b) 加法交換則が成り立つ。 - (\(c\)) 加法結合則が成り立つ。 - (d) 加法に対する零元が存在する。 - (e) 加法に対する逆元が存在する。 - (f) \(H\) は乗法に対して閉じている。 - (g) 乗法結合則が成り立つ。 - (h) 乗法分配則が成り立つ。 - (i) 乗法は非可換である。

Kai

設問1

\[ A= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -7 & 1 & 0 & 0 & 0 \\ -5 & 2 & 1 & 0 & 0 \\ 7 & -4 & -4 & 1 & 0 \\ -2 & 0 & -4 & -9 & 1 \end{pmatrix} \begin{pmatrix} -6 & -9 & -2 & 7 & -9 \\ 0 & -4 & -7 & -4 & -7 \\ 0 & 0 & -4 & 8 & -1 \\ 0 & 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix} \]

設問2

(1)

\[ \begin{aligned} Q\overline{Q} &= (aE+bI+cJ+dK)(aE-bI-cJ-dK)\\ &= (a^{2}E^{2}-abEI-acEJ-adEK) + (abIE-b^{2}I^{2}-bcIJ-bdIK)\\ &\quad+(acJE-bcJI-c^{2}J^{2}-cdJK)+(adKE-bdKI-cdJK-d^{2}K^{2})\\ &= (a^{2}E-abI-acJ-adK) + (abI+b^{2}-bcK+bdJ)\\ &\quad+(acJ+bcK+c^{2}-cdI)+(adK-bdJ+cdI-d^{2})\\ &= (a^{2}+b^{2}+c^{2}+d^{2})E \end{aligned} \]

(2)

\[ I^2 = -E \Rightarrow I^{-1} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ \end{pmatrix} = -I \]
\[ Q\overline{Q} = (a^2+b^2+c^2+d^2)E \Rightarrow Q^{-1} = \frac{1}{a^2+b^2+c^2+d^2} \begin{pmatrix} a & -b & -c & d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \\ \end{pmatrix} \]

(3)

The complete proving is to use \((a, b, c, d)\) to represent all the \(Q\)s below with their calculations, which is easy but tedious, hence some proof is omitted.

For \(i = 1,2,3\), let \(Q_{i} = a_{i}E+b_{i}I+c_{i}J+d_{i}K\).

(a): \(\forall Q_1, Q_2 \in H, Q_1 + Q_2 \in H\)

\[ \begin{aligned} Q_{1}+Q_{2} &= (a_{1}E+b_{1}I+c_{1}J+d_{1}K)+(a_{2}E+b_{2}I+c_{2}J+d_{2}K)\\ &= (a_{1}+a_{2})E+(b_{1}+b_{2})I+(c_{1}+c_{2})J+(d_{1}+d_{2})K\in H \end{aligned} \]

(b): \(\forall Q_1, Q_2 \in H, Q_1 + Q_2 = Q_2 + Q_1\)

\[ \begin{aligned} Q_{1}+Q_{2} &= (a_{1}E+b_{1}I+c_{1}J+d_{1}K)+(a_{2}E+b_{2}I+c_{2}J+d_{2}K)\\ &= (a_{2}E+b_{2}I+c_{2}J+d_{2}K)+(a_{1}E+b_{1}I+c_{1}J+d_{1}K) = Q_{2}+Q_{1} \end{aligned} \]

(\(c\)): \(\forall Q_1, Q_2, Q_3 \in H, (Q_1 + Q_2) + Q_3 = Q_1 + (Q_2 + Q_3)\)

\[ \begin{aligned} (Q_{1}+Q_{2})+Q_{3} &= \left\{(a_{1}E+b_{1}I+c_{1}J+d_{1}K)+(a_{2}E+b_{2}I+c_{2}J+d_{2}K)\right\}+(a_{3}E+b_{3}I+c_{3}J+d_{3}K)\\ &= (a_{1}E+b_{1}I+c_{1}J+d_{1}K)+\left\{(a_{2}E+b_{2}I+c_{2}J+d_{2}K)+(a_{3}E+b_{3}I+c_{3}J+d_{3}K)\right\}\\ &= Q_{1}+(Q_{2}+Q_{3}) \end{aligned} \]

(d): \(\exists O \in H, \forall Q \in H, O + Q = Q\).

Let \(O\) denote the zero-martix. When \((a, b, c, d) = 0\) we have \(Q_1 = O\), hence \(O \in H\). And we have

\[ Q_{1}+O = O+Q_{1} = Q_{1} \]

proof finishes.

(e): \(\forall Q \in H, \exists Q' \in H, Q + Q' = O\).

Let \(Q_{1}^{\prime}=-Q_{1}\). Then,

\[ \begin{aligned} Q_{1}^{\prime} &= -(a_{1}E+b_{1}I+c_{1}J+d_{1}K) \\ &= (-a_{1})E+(-b_{1})I+(-c_{1})J+(-d_{1})K\in H \end{aligned} \]

since \(Q_{1}+Q_{1}^{\prime}=Q_{1}^{\prime}Q_{1}=O\), the proof finishes.

(f): \(\forall Q_1, Q_2 \in H, Q_1Q_2 \in H\)

\[ \begin{aligned} Q_{1}Q_{2} &= (a_{1}E+b_{1}I+c_{1}J+d_{1}K)+(a_{2}E+b_{2}I+c_{2}J+d_{2}K) \\ &= (a_{1}a_{2}E^{2}+a_{1}b_{2}EI+a_{1}c_{2}EJ+a_{1}d_{2}EK) + (a_{2}b_{1}IE+b_{1}b_{2}I^{2}+b_{1}c_{2}IJ+b_{1}d_{2}IK)\\ &\quad+(a_{2}c_{1}JE+b_{2}c_{1}JI+c_{1}c_{2}J^{2}+c_{1}d_{2}JK)+(a_{2}d_{1}KE+b_{2}d_{1}KI+c_{2}d_{1}KJ+d_{1}d_{2}K^{2})\\ &= (a_{1}a_{2}E+a_{1}b_{2}I+a_{1}c_{2}J+a_{1}d_{2}K) + (a_{2}b_{1}I-b_{1}b_{2}E+b_{1}c_{2}K-b_{1}d_{2}J)\\ &\quad+(a_{2}c_{1}J-b_{2}c_{1}K-c_{1}c_{2}E+c_{1}d_{2}I)+(a_{2}d_{1}K+b_{2}d_{1}J-c_{2}d_{1}I-d_{1}d_{2}E)\\ &= (a_{1}a_{2}-b_{1}b_{2}-c_{1}c_{2}-d_{1}d_{2})E+(a_{1}b_{2}+a_{2}b_{1}+c_{1}d_{2}-c_{2}d_{1})I\\ &\quad+(a_{1}c_{2}+a_{2}c_{1}-b_{1}d_{2}+b_{2}d_{1})J+(a_{1}d_{2}+a_{2}d_{1}+b_{1}c_{2}-b_{2}c_{1})K\\ &\equiv a^{\prime}E+b^{\prime}I+c^{\prime}J+d^{\prime}K\equiv Q^{\prime} \in H \end{aligned} \]

(g): \(\forall Q_1, Q_2, Q_3 \in H, (Q_1Q_2)Q_3 = Q_1(Q_2Q_3)\)

Omitted

(h): \(\forall Q_1, Q_2, Q_3 \in H, (Q_1 + Q_2)Q_3 = Q_1Q_3 + Q_2Q_3\)

Omitted

(i): \(\exists Q_1, Q_2 \in H, Q_1Q_2 \neq Q_2Q_1\)

let

\[ \begin{aligned} (a_{1},b_{1},c_{1},d_{1}) &= (0,0,2,1) \\ (a_{2},b_{2},c_{2},d_{2}) &= (0,0,-1,2) \\ \end{aligned} \]
\[ \begin{aligned} Q_{1}Q_{2} &= (a_{1}a_{2}-b_{1}b_{2}-c_{1}c_{2}-d_{1}d_{2})E+(a_{1}b_{2}+a_{2}b_{1}+c_{1}d_{2}-c_{2}d_{1})I\\ &\quad+(a_{1}c_{2}+a_{2}c_{1}-b_{1}d_{2}+b_{2}d_{1})J+(a_{1}d_{2}+a_{2}d_{1}+b_{1}c_{2}-b_{2}c_{1})K \\ &= 5I \end{aligned} \]
\[ \begin{aligned} Q_{2}Q_{1} &= (a_{2}a_{1}-b_{2}b_{1}-c_{2}c_{1}-d_{2}d_{1})E+(a_{2}b_{1}+a_{1}b_{2}+c_{2}d_{1}-c_{1}d_{2})I\\ &\quad+(a_{2}c_{1}+a_{1}c_{2}-b_{2}d_{1}+b_{1}d_{2})J+(a_{2}d_{1}+a_{1}d_{2}+b_{2}c_{1}-b_{1}c_{2})K \\ &= -5I \end{aligned} \]

proof finishes.