Skip to content

京都大学 情報学研究科 知能情報学専攻 2021年8月実施 専門科目 S-4

Author

Isidore

Description

Kai

設問1

\[ C(a_1) = 00,\;C(a_2) = 01,\;C(a_3) = 10,\;C(a_4) = 110,\; \]

設問2

By the definition, we have $$ \bar{N} = \sum_{i=1}^np_il_i,\;l_i = N(p) = \lceil-\log_2p_i\rceil $$

Insert the \(l_i\), we immediately have

\[ \bar{N} = \sum_{i=1}^np_i\lceil\log_2\frac{1}{p_i}\rceil \]

Given \(\lceil\log_2\frac{1}{p_i}\rceil \geq \log_2\frac{1}{p_i}\), we have

\[ \bar{N} = \sum_{i=1}^np_i\lceil\log_2\frac{1}{p_i}\rceil \geq \sum_{i=1}^np_i\log_2\frac{1}{p_i} = H(S) \]

Similarly, as \(\lceil\log_2\frac{1}{p_i}\rceil < \log_2\frac{1}{p_i} +1\), we have

\[ \bar{N} < \sum_{i=1}^np_i(\log_2\frac{1}{p_i}+1) = \sum_{i=1}^np_i\log_2\frac{1}{p_i} + \sum_{i=1}^np_i = H(S) + 1 \]

設問3

Sequences are:

\[ \{\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32},\frac{1}{32}\} \]
\[ \{\frac{1}{2},\frac{1}{4},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16}\} \]
\[ \{\frac{1}{4},\frac{1}{4},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8}\} \]

Now, by the first sequence, we have a \(C\) as

\[ \{0,10,110,1110,11110,11111\} \]

設問4

omitted

設問5

omitted