京都大学 情報学研究科 知能情報学専攻 2021年8月実施 情報学基礎 F2-1
Author
Isidore, 祭音Myyura
Description
設問1
Kai
設問1
(1)
a. \(|L| = k\)
b. \(|L| > k\)
c. \(k\)
d. \(|L| < k\)
e. \(k - |L|\)
(2)
Note that Algorithm 1 is so called "Quick Select" algorithm. Let \(T(n)\) denote the expected time complexity of Quick-Select, we have
\[
\begin{aligned}
T(n) &= O(n) + T(\frac{n}{2}) \\
&= O(n) + O(\frac{n}{2}) + T(\frac{n}{4}) \\
&= O(n) + O(\frac{n}{2}) + O(\frac{n}{4}) + \cdots + O(1) \\
&\sim n (1 + \frac{1}{2} + \frac{1}{4} + \cdots + \left(\frac{1}{2} \right)^{\log n}) \\
&= n \cdot \frac{1}{1-\frac{1}{2}} = 2n
\end{aligned}
\]
Therefore, \(T(n) = O(n)\)
設問2
(1)
index | list |
---|---|
0 | 2101 -> 1111 |
1 | 0100 -> 1211 -> 0010 |
2 | |
3 | 1222 |
(2)
- (a): 0
- (b): 2
- (\(c\)): 3
- (d): 1
Reason: to minimize the cost is to equalize the probability to insert each list
(3)
Construct a system of six linear equations in six variables from the table given in (2), and we have
\[
\begin{aligned}
a_1 &= 1 \\
a_2 &= 2 \\
a_3 &= 0 \\
a_4 &= -2 \\
a_5 &= 0 \\
a_6 &= 2 \\
\end{aligned}
\]