Skip to content

京都大学 情報学研究科 知能情報学専攻 2020年8月実施 専門科目 S-5

Author

realball

Description

The Fourier spectrum of a continuous-time signal \(f(t)\) is given by \(F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt\), where \(j\) denotes the imaginary unit. Let \(X[k]\) denote discrete Fourier transform of a finite-length discrete signal of length \(N\), \(x[n] \ (n = 0, \ldots, N-1)\). Answer the following questions.

Q.1

Suppose that \(f(t)\) is an even function, that is \(f(x) = f(-x).\) The Fourier spectrum of \(f(t)\) is given by

\[ F(\omega) = 2 \int_0^{\infty} f(t) \boxed{\ (A)\ }dt. \]

Answer \(\boxed{\ (A)\ }\). Calculation procedure must also be included in the answer.

Q.2

Let \(x_s[n]\) be the circular shifted version of \(x[n]\) by \(s\),

\[ x_s[n] = \begin{cases} x[N+n-s] &(n<s) \\ x[n-s] &(n \geq s) \end{cases} \]

The discrete Fourier transform of \(x_s[n]\) is given by \(\boxed{\ (B)\ }X[k]\).

Answer \(\boxed{\ (B)\ }\). Calculation procedure must also be included in the answer.

Q.3

Let \(y[n]\) be a finite-length discrete signal of length \(2N\),

\[ y[n] = \begin{cases} x[n] &(0 \leq n < N) \\ x[2N-1-n] &(N \leq n < 2N). \end{cases} \]

The discrete Fourier transform of \(y[n]\) is given by

\[ Y[k] = 2 \boxed{\ (C)\ } \sum_{n=0}^{N-1} x[n] \cos (\boxed{\ (D)\ }). \]

Answer \(\boxed{\ (C)\ }\) and \(\boxed{\ (D)\ }\). Calculation procedure must also be included in the answer.

Q.4

The transform of \(x[n]\),

\[ X_{DCT}[k] = \alpha_k \sum_{n=0}^{N-1} x[n] \cos (\boxed{\ (D)\ }), \alpha_0 = 1/\sqrt{N}, \alpha_k = \sqrt{2/N} \]

is known as a discrete cosine tranform (DCT-II), and is used in data compression such as JPEG.

Explain an advantage of the discrete cosine transform compared to the discrete Fourier transform in terms of data compression.

Kai

Q.1

\[ \begin{aligned} \mathcal{F}(\omega) &=\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt\\ &= \int_{-\infty}^{\infty}f(t)\left[\cos(\omega t)-j \sin(\omega t)dt \right]\\ &= \int_{-\infty}^{\infty}f(t)\cos(\omega t)dt - \int_{-\infty}^{\infty}f(t)j \sin(\omega t)dt\\ &= \int_{-\infty}^{\infty}f(t)\cos(\omega t)dt\\ &\text{Thus, } (A) = \cos(\omega t) \end{aligned} \]

Q.2

\[ \begin{aligned} X_s[k]&= \sum_{n=0}^{N-1}x_s[n]e^{-j\frac{2\pi}{N}kn}\\ &=\sum_{n=0}^{S-1}x[N+n-s]e^{-j\frac{2\pi}{N}kn}+\sum_{n=s}^{N-1}x[n-s]e^{-j\frac{2\pi}{N}kn}\\ &\text{assume ①:} m=N+n-s;n=m+s-N\\ &\text{assume ②:} m=n-s;n=m+s\\ &=\sum_{m=N-s}^{N-1}x[m]e^{-j\frac{2\pi}{N}k(m+s-N)}+\sum_{m=0}^{N-S-1}x[m]e^{-j\frac{2\pi}{N}k(m+s)}\\ &=e^{-j\frac{2\pi}{N}ks}\sum_{m=0}^{N-1}x[m]e^{-j\frac{2\pi}{N}km}\\ &\text{Thus: } x_s[k]=X[k]e^{-j\frac{2\pi}{N}ks}\\ &\text{Then: } (B)=e^{-j\frac{2\pi}{N}ks} \end{aligned} \]

Q.3

\[ \begin{aligned} Y[k]&= \sum_{n=0}^{2N-1}y[n]e^{-j\frac{2\pi}{N}kn}\\ &=\sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi}{2N}kn}+\sum_{n=N}^{2N-1}x[2N-1-n]e^{-j\frac{2\pi}{2N}kn}+\sum_{m=0}^{N-1}x[m]e^{-j\frac{2\pi}{2N}k(2N-1-m)}\\ &=\sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi kn}{2N}}+\sum_{m=0}^{N-1}x[m]e^{-j\frac{2\pi}{2N}k(m+1)}\\ &=e^{\frac{j\pi k}{2N}}\left[\sum_{n=0}^{N-1}x\left[n\right]e^{-j\frac{\pi k}{N}(n+\frac12)}+\sum_{n=0}^{N-1}x\left[m\right]e^{j\frac{\pi k}{N}(n+\frac12)}\right]\\ &=2e^{-j\frac{\pi k}{2N}}\sum_{n=0}^{N-1}x[n]\cos\left[\frac{k\pi}N(n+\frac12)\right]\\ &\text{Thus}: (C)=e^{-j\frac{\pi k}{2N}};(D)=\frac{k\pi}N(n+\frac12) \end{aligned} \]

Q.4

Better concentrate energy