Skip to content

京都大学 情報学研究科 知能情報学専攻 2018年8月実施 専門科目 T-2

Author

realball

Description

The Fourier spectrum of a continuous-time signal \(x(t)\) is given by

\[ X(\omega) = \mathcal{F}[x(t)] = \int_{-\infty}^\infty x(t)e^{-j\omega t}dt, \]

where \(j\) denotes the imaginary unit and \(\mathcal{F}[]\) denotes Fourier transform. Let

\[ \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\infty}^\infty X(\omega)e^{j\omega t}dt \]

be the inverse Fourier transform.

Q.1

Find the continuous-time signal \(\mathcal{F}^{-1}[P_\Omega(\omega)]\) corresponding to the Fourier spectrum \(P_\Omega(\omega)\), where \(P_\Omega(\omega)\) denotes a rectangular function of width \(2\Omega\) and is given by

\[ P_\Omega(\omega) = \begin{cases} 1 & |\omega| < \Omega, \\ 0 & |\omega| \geq \Omega. \end{cases} \]

Q.2

Let \(\delta_T(t)\) be a comb function whose time period is \(T\),

\[ \delta_T(t) = \sum_{n=-\infty}^\infty \delta(t - nT). \]

Show that

\[ \mathcal{F}[\delta_T(t)] = \frac{2\pi}{T} \delta_{\frac{2 \pi}{T}}(\omega), \]

where \(\delta(t)\) is a function that satisfies

\[ \delta(t) = \begin{cases} \infty & t = 0, \\ 0 & t \neq 0, \end{cases} \]

and

\[ \int_{-\infty}^\infty \delta(t)dt = 1. \]

You may use \(\mathcal{F}[e^{j\omega_0t}] = \int_{-\infty}^\infty e^{j\omega_0t}e^{-j\omega t}dt = 2\pi \delta(\omega - \omega_0)\) for any real number \(\omega_0\).

Q.3

Let \(x_s(t) = x(t)\delta_T(t)\) be a continuous-time signal sampled from \(x(t)\) with a sampling period \(T\). Describe \(\mathcal{F}[x_s(t)]\) with \(X(\omega)\) and \(T\).

Kai

Q.1

\[ \begin{aligned} \mathcal{F}^{-1}[P_\Omega(\omega)]&=\frac{1}{2\pi}\int_{-\infty}^{\infty}P_{\Omega}(w)e^{jwt} d\omega\\ &=\frac{1}{2\pi}\int_{-\Omega}^{\Omega}e^{j\omega t}d\omega=\frac{1}{2\pi}\cdot\frac{e^{j\omega}}{j\omega}\mid_{-\omega}^{\omega}=\frac{1}{2\pi jt}\cdot 2j\sin \Omega t\\ &=\frac{1}{\pi t}\cdot\sin \Omega t \end{aligned} \]

Q.2

\[ S_{T}(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\frac{2\pi}{T}t} \]
\[ {{a_k=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\delta_{T}(t)e^{-jt\frac{2\pi}{T}t} dt=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=-\infty}^{\infty}\delta(t-nT)e^{-j\frac{2\pi}{T}t}dt=\frac{1}{T}}} \]
\[ \delta_T(t)=\frac{1}{T}\sum_{k=-\infty}^{\infty}e^{jk\frac{2\pi}{T}t} \]
\[ \begin{aligned} \mathcal{F}\left[\delta_{T}(t)\right]&=\sum_{k=-\infty}^{\infty}\frac{2\pi}{T}\delta(\omega-k\frac{2\pi}{T})\\ &=\frac{2\pi}{T}\delta_\frac{2\pi}{T}(\omega) \end{aligned} \]

Q.3

\[ \begin{aligned}\mathcal{F}[x_{s}(t)]=X_{s}(j\omega) &=\frac1{2\pi}\int_{-\infty}^{\infty}X\left[j{\theta}\cdot\mathcal{F}[\delta_T(t)]\right]\\ &=\frac1{2\pi}\int_{-\infty}^{\infty}X(j\theta)\cdot\sum_{k=-\infty}^{\infty}\frac{2\pi}{T}\delta(\omega-\theta-\frac{2\pi k}{T})d\theta\\ &=\frac1{2\pi}\cdot\frac{2\pi}{T}\sum_{k=\infty}^{\infty}\int_{-\infty}^{\infty}X(j\theta)\delta(w-\theta-\frac{2\pi k}T)d\theta\\ &\text{when }\theta=\omega+\frac{2\pi k}T, \delta(\omega-\theta-\frac{2\pi k}T)\not =0\\ &=\frac1T\sum_{k=-\infty}^{\infty}X(j(w+\frac{2\pi k}T)) \end{aligned} \]