Skip to content

京都大学 情報学研究科 数理工学専攻 2023年8月実施 凸最適化

Author

Casablanca

Description

日本語版

English Version

Let \(c=(c_1,c_2, \ldots , c_n)\) , where the superscript \(\top\) denotes transposition. Consider the following linear programming problem P:

\[ \begin{aligned} \text{P} : &\text{Minimize} &\boldsymbol{c}^{\top} \boldsymbol{y}\\ &\text{subject to} &\sum_{i=1}^{n} y_{i} \leq 1 \\ &\text{ } &\boldsymbol{y} \geq 0 \end{aligned} \]

where the decision variable of problem P is the vector \(\boldsymbol{y} = (y_1, y_2, \ldots y_n)^\top \in \mathbb{R}^\top\).

Answer the following questions (i) and (ii)

(i) write out a dual problem of problem P.

(ii) Show that problem P has an optimal solution.

Let \(Y\) be the set of optimal solutions of problem P.

Answer the following quetions (iii) and (iv).

(iii) Show that \(Y\) is a convex set.

(iv) Suppose that \(c_{1} = c_2 = \cdots = c_n\) and \(c_1 < 0\). Consider the following optimization problem Q:

\[ \begin{aligned} \text{Q} : &\text{Minimize} &\frac{1}{2} {\boldsymbol{x}^{\top} \boldsymbol{x} - \boldsymbol{c}^{\top} \boldsymbol{x}}\\ &\text{subject to} &\boldsymbol{x} \in Y \end{aligned} \]

where the decision variable of problem Q is the vector \(\boldsymbol{x} \in \mathbb{R}^n\). Obtain an optimal solution of problem Q by using Karush-Kuhn-Tucker conditions.

Kai

(i)

We have Lagrangian: \(L(y,\lambda,\nu) = c^\top y + \lambda (\mathbf{1}^\top y - \mathbf{1} ) - \nu^\top y\).

Obtain Lagrange dual function: \(d(\lambda, \nu) = \inf_{y} ((c^\top + \lambda \mathbf{1}^\top - \nu^\top)y - \lambda) = - \lambda\).

Then we write the dual problem D:

\[ \begin{aligned} \text{D} : &\text{Maximize} &-\lambda\\ &\text{subject to} &c + \lambda \mathbf{1} - \nu = 0\\ &\text{ } &\geq 0, \nu \succeq 0 \end{aligned} \]

(ii)

Since \(-\lambda \mathbf{1} \preceq c\), the optimal value \(v\) of dual problem D satisfies: \(v \leq \min \{ c_1, c_2, \ldots c_n \}\) then the linear programming \(P\) is bounded, thus has an optimal solution.

(iii)

For any \(y_1,y_2 \in Y\) , we know that for any \(\widetilde{y}\) which satisfies the constraints of P,

\[ c^\top y_1 \leq c^\top \widetilde{y}, \quad c^\top y_2 \leq c^\top \widetilde{y} \]

for \(\theta \in [0,1]\),

\[ \theta y_1 + (1 - \theta) y_2 \succeq \mathbf{0}, \quad \]
\[ \mathbf{1}^\top (\theta y_1 + (1-\theta) y_2) \leq 1\]
\[ c^\top (\theta y_1 + (1-\theta)y_2) = \theta c^\top y_1 + (1-\theta)c^\top y_2 \leq c^\top \widetilde{y} \]

then \(\theta y_1 + (1-\theta)y_2 \in Y\), \(Y\) is a convex set.

(iv)

Since \(c_1 = c_2 = \ldots c_n < 0\), \(Y = \{ y | y \succeq \mathbf{0}, \mathbf{1}^\top y = 1 \}\), we can rewrite Q as

\[ \begin{aligned} Q:&\text{Minimize} &\frac{1}{2} x^\top x - c^\top x \\ &\text{subject to} &x \succeq \mathbf{0}, \mathbf{1}^\top x = 1 \\ \end{aligned} \]

thus we get the Lagrangian: \(L(x,\lambda, \mu) = \frac{1}{2} x^\top x - c^\top x - \lambda^\top x + \mu(1-\mathbf{1}^\top x)\). Then the KKT-condition:

\[ \text{KKT-conditions: } \left\{ \begin{aligned} x - c - \lambda - \mu \mathbf{1} &= 0 \\ \lambda \succeq 0, -\lambda^\top x &=0 \\ x &\succeq 0\\ \mathbf{1}^\top x &= 1 \end{aligned} \right. \]

it is obviously that

\[ x^* = [\frac{1}{n} , \frac{1}{n}, \ldots , \frac{1}{n}]^\top , \lambda = \mathbf{0}, \mu = [\frac{1}{n} - c_1, \frac{1}{n} - c_1, \ldots, \frac{1}{n} - c_1]^\top \]

satiesfies the KKT-condtions. Hence \(x^*\) is an optimal solution.