Skip to content

京都大学 情報学研究科 数理工学専攻 2021年8月実施 力学系数学

Author

Casablanca

Description

日本語版

\(a(t), b(t)\)\(t\) のある有理式として次の実微分方程式を考える.

\[ \frac{d^2 x}{dt} + a(t) \frac{dx}{dt} + b(t)x = 0 \]

以下の問いに答えよ.

(i) \(k \geqq 1\) をある整数として,\(x = t^k\) が式 (1) の解であるための \(a(t), b(t)\) に関する必要十分条件を求めよ.

以下では,ある整数 \(k \geqq 1\) に対して (i) で求めた条件が成り立つものとし,\(\phi(t)\)\(t^k\) と線形独立な解として,

\[ p(t) = t\frac{d \phi}{dt} (t) - k \phi(t) \]

とおく.

(ii) \(a(t), b(t)\)\(p(t)\) を用いて表わせ.

(iii) \(p(t) = t\) のとき \(a(t), b(t)\) を定めよ.

(iv) 式 (1) のすべての解が定数でない多項式のとき,\(a(t), b(t)\) は多項式でないことを示せ.

English Version

Kai

(i)

If \(k = 1\), then $a(t) = tb(t) = 0.

If \(k \geq 2\), then \(k(k-1) + kta(t) + t^2b(t) = 0\).

Easy to see \(k(k-1) + kta(t) + t^2b(t) = 0\) is neccessary and sufficient.

(ii)

Let \(\Phi(t) = u(t)t^k, u(t) !\equiv \text{Constant}\),

$$ \Phi '(t) = kt^{k-1}u(t) + t^ku'(t) $$,

\[ \Phi''(t) = t^ku''(t) + 2kt^{k-1}u'(t) + k(k-1)t^{k-2}u(t) \]

then

\[ p(t) = t^{k-1}u'(t), p'(t) = (k-1)t^{k-2}u'(t) + t^{k-1}u''(t) \]

And we can obtain:

\[ t u''(t) + (2k + a(t)t)u'(t) = 0 \]

Therefore

\[ a(t) = -\frac{u''(t)}{u'(t)} - \frac{2k}{t} = -\frac{(3k-1)p'(t)}{tp(t)} \]
\[ b(t) = \frac{2k^2}{t^2} - \frac{kp'(t)}{tp(t)} \]

(iii)

\[ a(t) = -\frac{1}{t}, b(t) = \frac{1}{t^2} \]

(iv)

Let \(x_1\), \(x_2\) be 2 independent particular solutions, then

\[ x_1'' = -a(t)x_1' - b(t)x_1 , x_2'' = -a(t)x_2' - b(t)x_2 \]

and we have

\[ \begin{aligned} (x_1'x_2 - x_1 x_2')' &= x_1''x_2 - x_1 x_2''\\ &= -a(t)x_1'x_2 + a(t)x_1x_2'\\ &= -a(t)(x_1'x_2 - x_1 x_2') \end{aligned} \]

so we get

\[ x_1'x_2 - x_1x_2' = C e^{\int a(t)dt} \]

Let \(A(t)\) denote \(\int a(t)dt\). Since \(a(t)\) is a polynomial, and \(Ce^{-A(t)}\) is a polynomial for \(x_1'x_2 - x_1x_2'\) is a polynomial, we obtain \(a(t) \equiv 0\).

Then, consider

\[ \frac{d^2x}{dt^2} + b(t)x = 0 \]

If \(x_1, x_2\) are independent polynomials, and \(b(t)\) is polynomials, suppose that \(x(t)\) is \(m\) times and \(b(t)\) is \(n\) times, then \(b(t) \equiv 0\). Thus \(a(t), b(t)\) can't be polynomials.