Skip to content

京都大学 情報学研究科 数理工学専攻 2019年8月実施 グラフ理論

Author

祭音Myyura

Description

日本語版

\(G =(V,E)\) を節点集合 \(V\),枝集合 \(E\) から成る連結な単純無向グラフとし,各枝 \(e \in E\) には実数値の重み \(w(e)\) が与えられているとする. \(G\) の全域木 \(T \subseteq E\) に対して,補木の枝 \(a \in E \setminus T\) を含む \(T\) の基本閉路を \(C_T(a)\),木の枝 \(b \in T\) を含む \(T\) の基本カットセットを \(K_T(b)\) と書く.以下の問いに答えよ.

(i) \(G\) の全域木 \(T \subseteq E\) が最小木であるとき,次の条件(C)が成り立つことを証明せよ.

条件(C): 補木の任意の枝 \(a \in E \setminus T\) とその基本閉路の各枝 \(b \in C_T(a)\) に対して \(w(a) \ge w(b)\) が成り立つ.

(ii) 条件(C)を満たす任意の全域木 \(T\) は次の条件(K)を満たすことを証明せよ.

条件(K): 全域木 \(T\) の任意の枝 \(b \in T\) とその基本カットセットの各枝 \(a \in K_T(b)\) に対して \(w(a) \ge w(b)\) が成り立つ.

(iii) \(G\) の全域木 \(T \subseteq E\) に対して条件(K)が成り立つとき,\(T\) は最小木であることを証明せよ.

(iv) 次の命題が真であれば証明を,偽であれば反例を与えよ.

\(G\) が最小木を二つ持つとき,\(G\) には同じ重みを持つ枝が少なくとも2本存在する.」

English Version

Let \(G =(V,E)\) denote a simple and connected undirected graph with a vertex set \(V\) and an edge set \(E\) such that each edge \(e \in E\) is weighted by a real value \(w(e)\). For a spanning tree \(T \subseteq E\) of \(G\), let \(C_T(a)\) denote the fundamental cycle containing an edge \(a \in E \setminus T\), and \(K_T(b)\) denote the fundamental cut-set containing an edge \(b \in T\). Answer the following questions.

(i) Prove that every minimum spanning tree \(T \subseteq E\) of \(G\) satisfies the next condition (C).

(C): For every edge \(a \in E \setminus T\) each edge \(b \in C_T(a)\) satisfies \(w(a) \ge w(b)\).

(ii) Prove that any spanning tree \(T\) satisfying condition (C) also satisfies the next condition (K).

(K): For every edge \(b \in T\), each edge \(a \in K_T(b)\) satisfies \(w(a) \ge w(b)\).

(iii) Prove that any spanning tree \(T \subseteq E\) of \(G\) satisfying condition (K) is a minimum spanning tree.

(iv) Prove or disprove the next proposition, giving a proof or a counterexample.

"When \(G\) has two minimum spanning trees, some two edges in \(G\) have the same weight."

Kai

(i)

Assume that for an edge \(a \in E \setminus T\) there exists an edge \(b' \in C_T(a)\) such that \(w(a) < w(b')\).

Let \(T' = T \cup \{a\} \setminus \{b'\}\) be a tree constructed by substituting edge \(b'\) with edge \(a\). It is obviously that \(T'\) is a spanning tree and

\[ w(T') = w(T) - w(b') + w(a) < w(T) \]

which is contradictory to the fact that \(T\) is a minimum spanning tree.

Therefore, for every edge \(a \in E \setminus T\) each edge \(b \in C_T(a)\) satisfies \(w(a) \ge w(b)\).

(ii)

Assume that for an edge \(b \in T\), there exists an edge \(a' \in K_T(b)\) such that \(w(a') < w(b)\).

Let \(T' = T \cup \{a'\} \setminus \{b\}\) be a tree constructed by substituting edge \(b\) with edge \(a'\). By definition of fundamental cut-set we know that the removal of \(b\) disconnects \(T\) into exactly two components \(T_1\) and \(T_2\) and edge \(a'\) connects the two components. Thus \(T'\) is a spanning tree and

\[ w(T') = w(T) - w(b) + w(a') < w(T) \]

which is contradictory to the fact that \(T\) is a minimum spanning tree.

Therefore, For every edge \(b \in T\), each edge \(a \in K_T(b)\) satisfies \(w(a) \ge w(b)\).

(iii)

Let \(T\) denote a spanning tree of \(G\) that satisfy condition (K). Let \(T^*\) denote a minimum spanning tree of \(G\).

Suppose that \(T \neq T^*\). Then there exists an edge \(b \in T \setminus T^*\).

Consider the fundamental cut-set \(K_T(b)\), since \(T^*\) is connected, there must exist an edge \(a \in K_T(b) \cap T^*\) and \(a \neq b\).

Let \(T_1 = T^* \cup \{b\} \setminus \{a\}\), by condition (C) we have

\[ w(T_1) = w(T^*) - w(a) + w(b) \le w(T^*) \]

and

\[ |T^* - T| > |T_1 - T| \]

which means that, compared to \(T^*\), \(T_1\) is "closer" to \(T\).

Continue the above process until we get a spanning tree \(T_k = T, k > 0\), then we have

\[ w(T^*) \ge w(T_1) \ge \cdots \ge w(T_k) = w(T) \]

that is, spanning tree \(T\) is a minimum spanning tree.

(iv)

Let \(T_1\) and \(T_2\) are two distinct minimum spanning trees of \(G\), assume that edges' weights of \(G\) are distinct.

Consider the edge \(a\) of minimum weight among all the edges that are contained in exactly one of \(T_1\) or \(T_2\). W.l.o.g we assume that \(a \in T_1\).

Then, consider the fundamental cycle \(C_{T_2}(a)\) of \(T_2\), there exists an edge \(b \in C_{T_2}(a)\) but \(b \notin T_1\). By assumption we know that \(w(a) < w(b)\).

Note that \(T = T_2 \cup \{a\} \setminus \{b\}\) is a spanning tree and we have

\[ w(T) = w(T_2) + w(a) - w(b) < w(T_2) \]

which is contradictory to the fact that \(T_2\) is a minimum spanning tree.

Therefore, when \(G\) has two minimum spanning trees, some two edges in \(G\) have the same weight.