Skip to content

広島大学 先進理工系科学研究科 情報科学プログラム 2022年1月実施 専門科目I 問題2

Author

samparker, 祭音Myyura

Description

(1) 関数 \(z = z(u, v)\) は、実変数 \((u, v) \in \mathbb{R}^2\) に関して、\(C^2\) 級であると仮定する。 また、\((x, y) \in \mathbb{R}^2\) に対して、写像 \((u, v) = (x + y, x - y)\) を定義する。

\[ z_{xx} = \frac{\partial^2 z}{\partial x^2}, \quad z_{xy} = \frac{\partial^2 z}{\partial x \partial y}, \quad z_{yy} = \frac{\partial^2 z}{\partial y^2} \]

\[ z_{uu} = \frac{\partial^2 z}{\partial u^2}, \quad z_{uv} = \frac{\partial^2 z}{\partial u \partial v}, \quad z_{vv} = \frac{\partial^2 z}{\partial v^2} \]

を用いて表せ。

(2) 点 \(O(0, 0)\) 以外で定義された関数

\[ z = (x + y) \ln\{2(x^2 + y^2)\} \]

の全ての極値およびそのときの \((x, y)\) を求めよ。


(1) Suppose that the function \(z = z(u, v)\) is of class \(C^2\) in real variables \((u, v) \in \mathbb{R}^2\). Define the mapping by \((u, v) = (x + y, x - y)\) for \((x, y) \in \mathbb{R}^2\). Express

\[ z_{xx} = \frac{\partial^2 z}{\partial x^2}, \quad z_{xy} = \frac{\partial^2 z}{\partial x \partial y}, \quad z_{yy} = \frac{\partial^2 z}{\partial y^2} \]

in terms of

\[ z_{uu} = \frac{\partial^2 z}{\partial u^2}, \quad z_{uv} = \frac{\partial^2 z}{\partial u \partial v}, \quad z_{vv} = \frac{\partial^2 z}{\partial v^2}. \]

(2) Find all local extrema and their extremum points of the function

\[ z = (x + y) \ln\{2(x^2 + y^2)\} \]

defined for \((x,y) \neq (0,0)\).

Kai

(1)

\[ \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} \]
\[ \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} = \frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} \]
\[ z_{xx} = \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial u \partial v} + \frac{\partial^2 z}{\partial v \partial u} + \frac{\partial^2 z}{\partial v^2} = \frac{\partial^2 z}{\partial u^2} + 2\frac{\partial^2 z}{\partial u \partial v} + \frac{\partial^2 z}{\partial v^2} \]

Similarly,

\[ z_{yy} = \frac{\partial^2 z}{\partial u^2} - 2\frac{\partial^2 z}{\partial u \partial v} + \frac{\partial^2 z}{\partial v^2} \]
\[ z_{xy} = \frac{\partial^2 z}{\partial u^2} - \frac{\partial^2 z}{\partial v^2} \]

(2)

Let

\[ x = r \cos \theta, y = r \sin \theta \]

Then we have

\[ z = r(\cos \theta + \sin \theta) \ln(2r^2) \]
\[ \frac{\partial z}{\partial r} = (\sin \theta + \cos \theta) \left(\ln (2r^2) + 2\right) \]
\[ \frac{\partial z}{\partial \theta} = r(\cos \theta - \sin \theta) \ln(2r^2) \]

Solve the following equations

\[ \begin{cases} \frac{\partial z}{\partial r} = (\sin \theta + \cos \theta) \left(\ln (2r^2) + 2\right) = 0 \\ \frac{\partial z}{\partial \theta} = r(\cos \theta - \sin \theta) \ln(2r^2) = 0 \end{cases} \]

we get extremum points

\[ (-\frac{1}{\sqrt{2}e}, \frac{\pi}{4} + 2k\pi), (\frac{1}{\sqrt{2}e}, \frac{\pi}{4} + 2k\pi), (\frac{1}{\sqrt{2}e}, \frac{3\pi}{4} + 2k\pi), (-\frac{1}{\sqrt{2}e}, \frac{3\pi}{4} + 2k\pi) \]

where \(k\) is an integer, and extrema are

\[ \frac{2}{e}, -\frac{2}{e}. \]