広島大学 先進理工系科学研究科 情報科学プログラム 2019年8月実施 専門科目I 問題2
Author
samparker
Description
\(D(R) = \{(x,y) \in \mathbb{R}^2 : 1 \leq x^2 + y^2 \leq (R+1)^2, 0 \leq y \leq x\}\), \(R \geq 0\) とする。
(1) 実数 \(\alpha\) に対して,\(G(R) = \iint_{D(R)} x^\alpha y \ dxdy\) を求めよ。
(2) \(\alpha = -3\) とするとき,
を求めよ。
(3) \(\lim_{R \to +\infty} G(R)\) が有限な値に収束する実数 \(\alpha\) の範囲を定めよ。
Let \(D(R) = \{(x,y) \in \mathbb{R}^2 : 1 \leq x^2 + y^2 \leq (R+1)^2, 0 \leq y \leq x\}\), where \(R \geq 0\).
(1) Calculate the integral \(G(R) = \iint_{D(R)} x^\alpha y \, dxdy\) for a real number \(\alpha\).
(2) Find the limit
when \(\alpha = -3\).
(3) Determine the range of the real number \(\alpha\) on which the limit \(\lim_{R \to +\infty} G(R)\) converges.
Kai
(1)
Let
Then the region \(D(R)\) becomes
The integral becomes
Hence
(2)
When \(\alpha = -3\), we have
where \(C = \int_0^{\frac{\pi}{4}} \cos^{-3}\theta \sin \theta \ d\theta = \frac{1}{2}\). Then
(3)
To determine the range of \(\alpha\) for which \(\lim_{R \to +\infty} G(R)\) converges, observe that as \(R\) becomes large, the integral primarily depends on the behavior of \((R+1)^{\alpha + 3}\).
Since \(\lim_{R \to +\infty} (R+1)^{\alpha + 3}\) converges when \(\alpha \leq -3\), and by (2) we know that \(\lim_{R \to +\infty} G(R)\) diverges when \(\alpha = -3\). Therefore, \(\alpha < -3\).