広島大学 先進理工系科学研究科 情報科学プログラム 2017年8月実施 専門科目I 問題2
Author
samparker
Description
(1) \(\alpha > 0\) とする時、関数 \(f(x) = x^{\alpha} e^{-x}\) の \([0, \infty)\) における最大値を求めよ。
(2) 以下の広義積分が \(x > 0\) において収束することを示せ。
(3) 極限 \(\lim_{x \to +0} x \Gamma(x)\) を求めよ。
(1) For \(\alpha > 0\), find the maximum of the function \(f(x) = x^{\alpha} e^{-x}\) on \([0, \infty)\).
(2) Show the following improper integral converges on \(x > 0\):
(3) Find the limit:
Kai
(1)
Note that \(f'(x) > 0\) when \(x < \alpha\) and \(f'(x) < 0\) when \(x > \alpha\). Therefore, the maximum of \(f(x)\) is \(f(\alpha) = \alpha^{\alpha} e^{-\alpha}\).
(2)
Let’s divide the integral in a sum of two terms,
For the first term, since the function \(e^{-t}\) is decreasing, it's maximum on the interval \([0, 1]\) is attained at \(t = 0\), hence
But for \(x > 0\), this last integral converges to \(1/x\).
For the second term, since the exponential grows faster than any polynomial, for every \(x\) we can take \(N \in \mathbb{N}\) so big that \(t \geq N \Rightarrow e^{t/2} > t^{x-1}\) so
which completes the proof.