広島大学 先進理工系科学研究科 情報科学プログラム 2017年8月実施 専門科目I 問題1
Author
samparker, 祭音Myyura
Description
\(A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 2 & -4 \\ -1 & 0 & 1 \end{bmatrix}\) とする。
(1) \(A\) を対称行列 \(S \ (S^T = S)\) と交代行列 \(T \ (T^T = -T)\) の和 \((A = S + T)\) に分解せよ。ただし、\(A^T\) は、行列 \(A\) の転置を表す。
(2) \(S\) のすべての固有値と対応する固有空間を求めよ。
(3) \(T\) のすべての固有値と対応する固有空間を求めよ。
(4) 一般に、実交代行列の固有値は \(0\) または純虚数であることを示せ。
Let \(A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 2 & -4 \\ -1 & 0 & 1 \end{bmatrix}\).
(1) Decompose \(A\) into the sum \(A = S + T\) of the symmetric matrix \(S\) (\(S^T = S\)) and the alternative matrix \(T\) (\(T^T = -T\)). Here \(A^T\) denotes the transpose of the matrix \(A\).
(2) Find all the eigenvalues of the symmetric matrix \(S\) and a basis of the corresponding eigenspaces.
(3) Find all the eigenvalues of the alternative matrix \(T\) and a basis of the corresponding eigenspaces.
(4) Show that the eigenvalues of the real alternative matrix are \(0\) or purely imaginary numbers.
Kai
(1)
Let \(S = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}\) and \(T = \begin{bmatrix} 0 & g & h \\ -g & 0 & i \\ -h & -i & 0 \end{bmatrix}\). Then we have
Solving the equations we have
Hence
(2)
Eigenvalues
A basis of the corresponding eigenspaces
(3)
Eigenvalues
A basis of the corresponding eigenspaces
(4)
Let \(\lambda\) be an eigenvalue of \(A\) and let \(\mathbf{x}\) be an eigenvector corresponding to the eigenvalue \(\lambda\). That is, we have
Multiplying by \(\bar{\mathbf{x}}^{T}\) from the left, we have
Note that the left hand side \(\bar{\mathbf{x}}^{T}A\mathbf{x}\) is the dot (inner) product of \(\bar{\mathbf{x}}\) and \(A\mathbf{x}\). Since the dot product is commutative, we have
Since \(A\) is skew-symmetric, we have \(A^{T}=-A\). Substituting this into the above equality, we have
Taking conjugate of \(A\mathbf{x}=\lambda\mathbf{x}\) and use the fact that \(A\) is real, we have
Thus, we have
Therefore comparing the left and right hand sides of (*) yields
Since \(\mathbf{x}\) is an eigenvector, it is nonzero by definition. Thus \(||\mathbf{x}||\neq 0\).
Hence we have
and this implies that \(\lambda\) is either \(0\) or purely imaginary number.