Skip to content

東京工業大学 工学院 電気電子系 2022年度 数学 2

Author

Miyake

Description

Kai

1)

a)

与えられた微分方程式 (2.1) の右辺を \(0\) にした

\[ \begin{aligned} \frac{dy}{dx} + y = 0 \end{aligned} \]

の一般解は、任意定数を \(A\) として \(y = Ae^{-x}\) である。 そこで、(2.1) に \(y=A(x)e^{-x}\) を代入すると、

\[ \begin{aligned} \frac{dA(x)}{dx} &= 1 \\ \therefore \ \ A(x) &= x + C \end{aligned} \]

を得る。 よって、 (2.1) の一般解は、 \(C\) を任意定数として、

\[ \begin{aligned} y &= (x + C)e^{-x} \end{aligned} \]

b)

\(y=e^{\lambda x}\) を (2.2) に代入すると、

\[ \begin{aligned} \lambda^2 - 2 \lambda - 8 &= 0 \\ (\lambda - 4)(\lambda + 2) &= 0 \\ \therefore \ \ \lambda &= -2, 4 \end{aligned} \]

なので、 (2.2) の一般解は、 \(A, B\) を任意定数として、

\[ \begin{aligned} y = A e^{-2x} + B e^{4x} \end{aligned} \]

2)

a)

(2.3) で \(\alpha=1\) とした方程式に、\(y=Ce^{-x}\) を代入すると、 \(C = -1/5\) となる。 よって、一般解は、 \(A, B\) を任意定数として、

\[ \begin{aligned} y = A e^{-2x} + B e^{4x} - \frac{1}{5} e^{-x} \end{aligned} \]

b)

(2.3) で \(\alpha=2\) とした方程式に、\(y=Cxe^{-2x}\) を代入すると、 \(C = -1/6\) となる。 よって、一般解は、 \(A, B\) を任意定数として、

\[ \begin{aligned} y = A e^{-2x} + B e^{4x} - \frac{1}{6} xe^{-2x} \end{aligned} \]