東京工業大学 情報理工学院 数理・計算科学系 2019年度 午前 問B
Author
peter8rabit, 祭音Myyura
Description
以下の問いに答えよ.ただし必要ならば
であることは証明なしで使ってよい.
(1) \(s > 0\) に対し,広義積分 \(\int_0^{\infty}e^{-x}x^{s-1}dx\) が収束することを示せ.
(2) \(s > 0\) に対し,ガンマ関数 \(\Gamma(s)\) を \(\Gamma(s) = \int_0^{\infty} e^{-x}x^{s-1}dx\) と定める.このとき \(\Gamma(s+1) = s\Gamma(s)\) を示せ.
(3) ガンマ関数 \(\Gamma(s)\) の \(s = \frac{3}{2}\) での値 \(\Gamma \left( \frac{3}{2} \right)\) を求めよ.
Kai
(1)
According to subadditivity of definite integrals, we split the integral into two as follows
For the first integral, we note that since \(s>0\), we can find a segment \([a,A]\) such that \(s \in [a,A]\). Then, for \(s \in [a,A]\) and \(x \in [0, \infty)\) we have
By comparison test, we observe that the integral (1) converges.
For the second integral we note that
and again by comparison test, the integral (2) converges.