東京大学 新領域創成科学研究科 複雑理工学専攻 2021年8月実施 専門基礎科目 2.1 線形代数
Author
Description
以下の問に答えよ。
問1
実正方行列
とする。ただし
(1) 行列
(2) 行列
(3) 正の整数
問2
(1)
(2)
ただし,
問3
実正方行列
とする。行列
(1) 以下を
(2) 以下が成立することを示せ。ただし,
Answer the following questions.
(Q.1) Consider a real square matrix A given by
where
- (1) Obtain the eigenvalues
and ( ) of matrix A. - (2) Obtain the eigenvectors
and of matrix A. and correspond to and , respectively. - (3) Obtain
, where n is a positive integer. - (Q.2) Consider an
real symmetric matrix B with the eigenvalues ( ) and the corresponding eigenvectors .-
(1) Under the constraint of
, obtain the minimum of . Show the derivations in addition to the answers. -
(2) Under the constraint of
and ( ), obtain the minimum of .Omit the derivations and write only the answers.
-
Note that n and m are positive integers,
(Q.3) Consider a real square matrix C given by
Assume the eigenvalues of matrix C are
(1) Express the following in terms of
Omit the derivations and write only the answer.
(2) Show that the following holds:
where e is the base of the natural logarithm,