東京大学 新領域創成科学研究科 メディカル情報生命専攻 2024年1月実施 問題8
Author
Description
Suppose that the eigenvalues and the corresponding eigenvectors of an
Suppose that
Answer the following questions.
-
Show all the eigenvalues and the corresponding eigenvectors of
. -
If
are mutually different, show that is a diagonal matrix, using that is a matrix of concatenated eigenvectors. -
Show all the eigenvalues and the corresponding eigenvectors of
.
-
Suppose that
is the maximum eigenvalue of , and . Calculate . -
Suppose that
is the eigenvector of corresponding to the minimum eigenvalue. Calculate using that is a matrix concatenating . -
Suppose that
is an arbitrary positive integer. Calculate .
假设
假设
回答以下问题。
-
展示
的所有特征值及相应的特征向量。 -
如果
是互不相同的,证明 是一个对角矩阵,其中 是由特征向量构成的矩阵。 -
展示
的所有特征值及相应的特征向量。
-
假设
是 的最大特征值,并且 。
计算 。 -
假设
是 对应于最小特征值的特征向量。计算 ,其中 是由 构成的矩阵。 -
假设
是任意正整数。计算 。
Kai
1. Positive Eigenvalues and Normalized Eigenvectors of
Given the singular value decomposition (SVD) of
The matrix
2. Surjectivity and Injectivity of
Surjective (onto):
The mapping
Injective (one-to-one):
The mapping
3. Image of and Kernel of
The pseudoinverse
We need to show that
Thus,
Now, consider
Thus,
4. Orthogonal Decomposition
Given
To show orthogonality:
Since
Thus,
5. Minimizing
Let
Consider the error:
Since
The norm to be minimized is:
This is minimized when
Knowledge
重点词汇
- singular value decomposition (SVD) 奇异值分解
- pseudoinverse 广义逆
- surjective 满射
- injective 单射
- orthogonal decomposition 正交分解
参考资料
- "Linear Algebra and Its Applications" by Gilbert Strang, Chapter 7: The Singular Value Decomposition (SVD)
- "Matrix Computations" by Gene H. Golub and Charles F. Van Loan, Chapter 2: Matrix Analysis