東京大学 新領域創成科学研究科 メディカル情報生命専攻 2024年1月実施 問題7
Author
水月, 祭音Myyura, zephyr
Description
入力データサイズ
(1)
(2)
(3)
以下の (4) の命題は成り立つか?最初に真偽を述べ、それが正しいことを証明せよ。
(4)
以下の (5) の再帰方程式が成り立つとき、
(5)
Let
(1)
Does the following proposition (4) hold true? State true or false first and prove it.
(4)
Given the following recurrence (5), write the complexity of
(5)
设
(1)
以下命题(4)是否成立?首先陈述真伪并证明。
(4)
给定下列递推关系(5),写出
(5)
Kai
Written by 水月.
(1)
(2)
(3)
Note that
hence
that is
(4)
The statement is False.
Counter example:
(5)
See Generic form of Master Theorem
Kai
Written by zephyr.
解题思路
这道题目主要涉及递归方程的复杂度分析和渐进符号的性质。我们需要运用主定理、迭代法等技巧来解决递归方程,并理解大 O 符号的性质来证明命题。对于最后一个问题,我们需要根据递归方程的形式来判断使用哪种方法求解。
1.
To solve this recurrence, we can use the iteration method:
Therefore,
2.
This recurrence fits the form of the Master Theorem with
Since
Therefore,
3.
This recurrence also fits the form of the Master Theorem with
Since
Therefore,
4. if and only if
This proposition is false. Let's examine both directions:
Part 1: If , then
This direction is true.
Proof: Assume
We know that
Since
Therefore,
This means
Part 2: If , then
This direction is false.
Consider the function
This means that for any constant
Therefore, the statement "if
Conclusion
The original proposition is false because while
A correct statement would be: If
5.
Let's analyze this recurrence for different cases of
Case 1:
In this case, we can use a variant of the Master Theorem. We have:
Here,
Since
Thus,
Case 2:
When
This case doesn't fit directly into the Master Theorem. Let's solve it by substitution:
Continuing this process, we get:
Therefore, when
Case 3:
In this case, we again compare
Since
This means
Therefore, when
Case 4:
When
In this case,
Therefore, when
Summary
- For
: - For
: - For
:
Knowledge
难点思路
第 4 小题的证明和第 5 小题的复杂度分析较为困难。对于第 4 小题,关键是理解指数函数的性质和大 O 符号的定义。对于第 5 小题,由于不能直接应用主定理,需要通过猜测和归纳证明的方法来解决。
解题技巧和信息
- 对于简单的递归方程,可以尝试使用迭代法直接求解。
- 对于符合形式的递归方程,优先考虑使用主定理。
- 当递归方程不能直接应用主定理时,可以尝试猜测复杂度并使用归纳法证明。
- 在处理渐进符号时,要注意指数函数、对数函数等的性质。
常见算法复杂度排序(从低到高):
重点词汇
- recurrence relation 递归关系
- Master Theorem 主定理
- iteration method 迭代法
- induction proof 归纳证明
- asymptotic notation 渐进符号
- floor function 下取整函数
参考资料
- Introduction to Algorithms (CLRS), Chapter 4: Divide-and-Conquer
- Algorithm Design (Kleinberg & Tardos), Chapter 5: Divide and Conquer
- The Art of Computer Programming (Knuth), Volume 1: Fundamental Algorithms, Section 1.2.11: Asymptotic Representations