東京大学 新領域創成科学研究科 メディカル情報生命専攻 2024年1月実施 問題11
Author
Description
A quantum state of a 1-qubit quantum computer can be represented by a
-
Show that all the eigenvalues of matrix
are non-negative real numbers. -
Answer the probability that state 0 is observed by measurement in the computational basis after applying quantum gate operation
to quantum state . -
Answer the probability that state 0 is observed by measurement in the computational basis after applying quantum gate operation
to quantum state . -
Let
be the quantum state after applying quantum gate operation to quantum state . Compute .
1个量子比特量子计算机的量子态可以表示为一个
-
证明矩阵
的所有特征值都是非负实数。 -
在对量子态
施加量子门操作 后,在计算基中测量观察到状态0的概率是多少。 -
在对量子态
施加量子门操作 后,在计算基中测量观察到状态0的概率是多少。 -
设
是施加量子门操作 后的量子态。计算 。
Kai
解题思路
这道题目涉及量子计算中的密度矩阵和量子门操作,需要运用线性代数和复数运算的知识。我们将逐步解答每个小问:
- 求密度矩阵的特征值,证明它们是非负实数。
- 计算 Hadamard 门(H 门)操作后的测量概率。
- 计算 Y 门操作后的测量概率。
- 计算一般量子门 U 操作后的密度矩阵参数。
每个小问都需要详细的数学推导。
1. Show that all the eigenvalues of matrix are non-negative real numbers
To find the eigenvalues of
The solutions to this quadratic equation are:
Since
2. Probability of observing state 0 after applying H gate
The Hadamard gate operation transforms
The probability of observing state 0 is the top-left element of this matrix:
3. Probability of observing state 0 after applying Y gate
Similarly, for the Y gate:
The probability of observing state 0 is:
4. Compute after applying U gate
Let
We need to calculate
Now, multiplying this by
Where:
Now, we need to compute
The purity of a density matrix is defined as
Since this quantity is preserved under unitary transformations, we have:
Therefore:
This result shows that the sum of squares of the parameters in the density matrix is invariant under unitary transformations.
Knowledge
难点思路
第 4 小问的计算过程非常复杂,直接计算会非常繁琐。关键是要认识到酉变换的性质,即它保持密度矩阵的纯度不变。这样可以大大简化计算。
解题技巧和信息
- 在处理密度矩阵时,要注意其特殊性质:Hermitian(自伴)、半正定、迹为 1。
- 量子门操作可以表示为
,其中 是酉矩阵。 - 酉变换保持密度矩阵的迹和纯度不变,意味着新态的
保持不变。这是解决复杂问题的关键。 - 在计算复杂的矩阵乘法时,可以先关注最终需要的元素,而不必计算整个矩阵。
- Hadamard 门
将计算基的状态均匀地混合到对角线基。测量概率可以通过变换后的密度矩阵来计算。 - Pauli-Y 门
交换计算基的状态并引入相位因子。
重点词汇
- density matrix 密度矩阵
- eigenvalue 特征值
- quantum gate 量子门
- Hadamard gate H 门
- unitary transformation 酉变换
- purity 纯度
- trace 迹
参考资料
- Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. Chapter 2 and 4.
- Wilde, M. M. (2017). Quantum Information Theory. Cambridge University Press. Chapter 3.