東京大学 新領域創成科学研究科 メディカル情報生命専攻 2023年8月実施 問題8
Author
Description
Answer the following questions regarding the transition matrix
,
(1) Show that the vector
is an eigenvector of
(2) Find the
(3) Find
The trace of an
(4) Prove that
(5) Prove the following: If there exists a natural number
回答以下关于转移矩阵
的问题,
(1) 证明向量
是
(2) 求
(3) 求
一个
(4) 证明
(5) 证明以下命题:如果存在自然数
Kai
Written by zephyr
解题思路
这道题目涉及马尔可夫链的转移矩阵、特征向量、矩阵幂运算、极限计算以及矩阵迹的性质。我们需要运用线性代数的知识来分析转移矩阵的特征值和特征向量,利用这些来计算矩阵的幂和极限。最后,我们还需要证明关于矩阵迹的一些性质。
Solution
1. Eigenvector Proof
To show that
Let's compute:
Therefore,
2. n-th Order Transition Matrix
To find
The characteristic equation is:
Solving this, we get:
The eigenvector corresponding to
Now we can write
Therefore,
3. Limit of as
As
4. Proof of
Let
5. Proof: If , then
We will prove this statement using the following steps:
-
Let
be the eigenvalues of (including algebraic multiplicities). -
From the condition
, we know that is nilpotent. For a nilpotent matrix, all its eigenvalues are zero. We can prove this as follows: If
is an eigenvalue of , then is an eigenvalue of . Since , all eigenvalues of must be zero. Therefore, , which implies . -
From the result in part 4, we know that
. -
Since all eigenvalues of
are zero, we have:
Therefore, we have proved that if
Knowledge
难点思路
本题的难点在于第2问和第3问,需要利用矩阵的特征分解来计算矩阵的幂。关键是要认识到可以用特征值和特征向量将矩阵对角化,从而简化矩阵幂的计算。另外,在计算矩阵的逆时要特别注意,因为这里很容易出错。
解题技巧和信息
- 在处理马尔可夫链问题时,注意转移矩阵的特征值总有一个是1。
- 计算矩阵的高次幂时,考虑使用特征分解方法。
- 在证明矩阵性质时,考虑使用特征值的性质。
- 矩阵迹的性质在很多证明中都很有用,要熟练掌握。
- 在进行矩阵运算时,要仔细检查每一步,特别是在计算逆矩阵时。
重点词汇
- Markov chain 马尔可夫链
- transition matrix 转移矩阵
- eigenvalue 特征值
- eigenvector 特征向量
- matrix diagonalization 矩阵对角化
- trace of a matrix 矩阵的迹
- characteristic equation 特征方程
- steady state 稳态
参考资料
- Strang, Gilbert. "Linear Algebra and Its Applications." Chapter 5: Eigenvalues and Eigenvectors.
- Ross, Sheldon M. "Introduction to Probability Models." Chapter 4: Markov Chains.
- Horn, Roger A., and Charles R. Johnson. "Matrix analysis." Chapter 1: Eigenvalues, Eigenvectors, and Similarity.