跳到主要内容

東京大学 新領域創成科学研究科 メディカル情報生命専攻 2023年8月実施 問題8

Author

zephyr

Description

Answer the following questions regarding the transition matrix

,

.

(1) Show that the vector

is an eigenvector of .

(2) Find the -th order transition matrix .

(3) Find .

The trace of an real-valued matrix is defined as . Answer the following questions.

(4) Prove that where the eigenvalues of are described as .

(5) Prove the following: If there exists a natural number such that ( is the zero matrix), then .


回答以下关于转移矩阵

的问题,

(1) 证明向量

的一个特征向量。

(2) 求 阶转移矩阵

(3) 求

一个 实数值矩阵 的迹定义为 。回答以下问题。

(4) 证明 ,其中 的特征值为

(5) 证明以下命题:如果存在自然数 使得 是零矩阵),则

Kai

Written by zephyr

解题思路

这道题目涉及马尔可夫链的转移矩阵、特征向量、矩阵幂运算、极限计算以及矩阵迹的性质。我们需要运用线性代数的知识来分析转移矩阵的特征值和特征向量,利用这些来计算矩阵的幂和极限。最后,我们还需要证明关于矩阵迹的一些性质。

Solution

1. Eigenvector Proof

To show that is an eigenvector of , we need to find a scalar such that .

Let's compute:

Therefore, is indeed an eigenvector of with eigenvalue .

2. n-th Order Transition Matrix

To find , we'll use the eigen-decomposition of . We already found one eigenpair. Let's find the other:

The characteristic equation is:

Solving this, we get: and

The eigenvector corresponding to is

Now we can write , where:

Therefore,

3. Limit of as

As , since . Therefore,

4. Proof of

Let be diagonalizable (if not, we can use the Jordan canonical form). Then , where is a diagonal matrix with eigenvalues on the diagonal.

5. Proof: If , then

We will prove this statement using the following steps:

  1. Let be the eigenvalues of (including algebraic multiplicities).

  2. From the condition , we know that is nilpotent. For a nilpotent matrix, all its eigenvalues are zero. We can prove this as follows:

    If is an eigenvalue of , then is an eigenvalue of . Since , all eigenvalues of must be zero. Therefore, , which implies .

  3. From the result in part 4, we know that .

  4. Since all eigenvalues of are zero, we have:

Therefore, we have proved that if , then .

Knowledge

难点思路

本题的难点在于第2问和第3问,需要利用矩阵的特征分解来计算矩阵的幂。关键是要认识到可以用特征值和特征向量将矩阵对角化,从而简化矩阵幂的计算。另外,在计算矩阵的逆时要特别注意,因为这里很容易出错。

解题技巧和信息

  1. 在处理马尔可夫链问题时,注意转移矩阵的特征值总有一个是1。
  2. 计算矩阵的高次幂时,考虑使用特征分解方法。
  3. 在证明矩阵性质时,考虑使用特征值的性质。
  4. 矩阵迹的性质在很多证明中都很有用,要熟练掌握。
  5. 在进行矩阵运算时,要仔细检查每一步,特别是在计算逆矩阵时。

重点词汇

  • Markov chain 马尔可夫链
  • transition matrix 转移矩阵
  • eigenvalue 特征值
  • eigenvector 特征向量
  • matrix diagonalization 矩阵对角化
  • trace of a matrix 矩阵的迹
  • characteristic equation 特征方程
  • steady state 稳态

参考资料

  1. Strang, Gilbert. "Linear Algebra and Its Applications." Chapter 5: Eigenvalues and Eigenvectors.
  2. Ross, Sheldon M. "Introduction to Probability Models." Chapter 4: Markov Chains.
  3. Horn, Roger A., and Charles R. Johnson. "Matrix analysis." Chapter 1: Eigenvalues, Eigenvectors, and Similarity.