東京大学 新領域創成科学研究科 メディカル情報生命専攻 2023年8月実施 問題7
Author
Description
For real number
(1) When
(2) When
(3) When
对于实数
(1) 当
(2) 当
(3) 当
Kai
Written by zephyr
解题思路
这个问题涉及迭代函数的分析,主要考察了对数函数的性质和迭代过程的理解。我们需要仔细分析每个子问题,利用函数迭代和对数的性质来解决。问题 (1) 和 (2) 为问题 (3) 的解答铺垫,因为它们帮助我们理解
对于问题 (3),我们需要更仔细地分析
1. Proving when
To prove this, we need to show that
Let
Applying
This shows that
Now, let's consider
This shows that
Therefore,
2. Finding minimum such that when
We need to find the smallest
Let's work backwards:
Continuing to apply
Therefore, the minimum value of
3. Comparing and when
Let's analyze these two expressions by considering different ranges of n:
: This applies to the number of iterations needed to reduce to . : This finds the number of iterations needed to reduce to .
Let's consider different cases:
Case 1:
- In this case,
, because one application of is sufficient to reduce to . , because - Therefore, when
,
Case 2:
- In this case,
, because two applications of are needed to reduce to . , because - Therefore, when
,
Case 3:
- In this case,
For
Let
This inequality holds because for any integer
Therefore, we can conclude:
- When
: - When
: - When
:
In summary,
Knowledge
难点思路
问题 (2) 中,从
解题技巧和信息
- 在处理迭代函数时,正向和反向思考都很重要。有时从最终状态反推初始值会更容易。
- 对数函数和指数函数的性质在这类问题中经常用到,熟悉它们的特性和关系很重要。
- 在比较复杂函数的大小关系时,考虑极限情况和通用情况都很重要。
- 在分析复杂函数关系时,分类讨论是一个强有力的工具。它可以帮助我们处理不同范围内的特殊情况。
- 对于涉及对数和整数的问题,特别注意整数边界情况(如 2 的整数次幂)往往很重要。
- 在证明不等式时,有时需要考虑具体的数值范围,而不仅仅是一般情况。
重点词汇
- iterative function 迭代函数
- ceiling function 天花板函数
- logarithm 对数
- exponentiation 指数运算
- inequality 不等式
参考资料
- Concrete Mathematics: A Foundation for Computer Science (2nd Edition) by Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Chapter 3: Integer Functions
- Introduction to Algorithms (3rd Edition) by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Chapter 3: Growth of Functions