東京大学 新領域創成科学研究科 メディカル情報生命専攻 2022年8月実施 問題8
Author
Description
(1) Describe the eigenvalues and eigenvectors of the following matrix. (
(2) What is the range of
(3) Consider an
Kai
(1) Eigenvalues and Eigenvectors
To find the eigenvalues
Using the row addition method for simplification, we can add all rows to the first row:
Now, we can absorb the common factor
Setting the determinant to zero:
So, the eigenvalues are:
Eigenvectors
For
Solving
, we find:
For
We need to solve
(2) Positive Semi-definiteness
A matrix is positive semidefinite if all its eigenvalues are non-negative. For
Solving these inequalities:
The most restrictive condition is
Thus, the range of
(3) Non-Singularity of Symmetric Matrix
Consider an
The matrix
where
The eigenvalues of
The matrix
This holds if:
since
Thus, the matrix
Knowledge
特征值和特征向量 正定矩阵
难点解题思路
- 通过求解特征方程来找到特征值。
- 根据特征值的符号判断矩阵的半正定性。
- 使用矩阵特征值的性质判断矩阵的非奇异性。
解题技巧和信息
- 计算特征方程时,使用行列式和代数余子式。
- 确定半正定矩阵时,所有特征值必须为非负数。
- 判断矩阵是否非奇异,可以通过特征值是否全非零来实现。
重点词汇
eigenvalue 特征值
eigenvector 特征向量
positive semidefinite 正半定
non-singular 非奇异
参考资料
- Linear Algebra and Its Applications by Gilbert Strang, Chap. 6
- Introduction to Linear Algebra by Gilbert Strang, Chap. 7