東京大学 新領域創成科学研究科 メディカル情報生命専攻 2017年8月実施 問題11
Author
Description
Assume that the distributions of real-valued mutually independent random variables
Denote by
(1) Find the distribution function of
(2) Find the distribution function of
(3) Find the distribution function of
(4) Find the expectation of
假设实值相互独立随机变量
记
(1) 找到
(2) 找到
(3) 找到任意
(4) 当
Kai
(1)
To find the distribution function of the smallest order statistic
Since
We know that
Thus, the distribution function of
(2)
To find the distribution function of the largest order statistic
Since
(3)
To find the distribution function of the
Step 1: Basic Concepts and Binomial Probability
Since
Step 2: Using Binomial Distribution
We can think of this as a binomial distribution problem. We need to consider the event that at least
Here,
(4)
If
The expectation of
where
Therefore:
This is a Beta distribution integral:
Using the Beta function property, we get:
Thus:
Knowledge
顺序统计量 概率分布函数 期望值 Beta分布
难点思路
第 (3) 小问关于任意
解题技巧和信息
对于顺序统计量,了解如何通过分布函数
重点词汇
- order statistic 顺序统计量
- distribution function 分布函数
- expectation 期望值
- uniform distribution 均匀分布
参考资料
- "Probability and Statistics" by Morris H. DeGroot and Mark J. Schervish, Chapter 5.
- "A First Course in Probability" by Sheldon Ross, Chapter 8.