東京大学 新領域創成科学研究科 メディカル情報生命専攻 2016年8月実施 問題8
Author
Description
Answer the following questions about linear algebra.
(1) Denote by
-
(1.1)
for any two-dimensional point . -
(1.2)
for any non-zero two-dimensional vector orthogonal to .

(2) Assume that a real symmetric matrix
(3) Denote by
回答以下有关线性代数的问题。
(1) 用
-
(1.1) 对于任意二维点
, 。 -
(1.2) 对于任意非零二维向量
,它与 正交, 。
(2) 假设一个实对称矩阵
(3) 用
Kai
(1)
(1.1)
The orthogonal projection of
To prove the proposition, we apply
Using the definition of orthogonal projection:
Simplifying the dot products:
Thus:
(1.2)
Given
Using the definition of orthogonal projection:
Since
Thus:
(2)
Assume that a real symmetric matrix
Let
Applying
Since
Thus:
Since
Thus, the eigenvalues
Therefore:
(3)
Given the matrix
Matrix
where
Derivation of the Projection Matrix
1. Projection of a Vector
The projection of a vector
In matrix form, we write:
where
2. Finding the Coefficients
To determine the coefficients
This equation implies:
Assuming
3. Constructing the Projection Matrix
Substituting
Since this holds for any vector
Knowledge
对称矩阵 特征值和特征向量 投影矩阵
重点词汇
- Orthogonal projection 正交投影
- Symmetric matrix 对称矩阵
- Eigenvalue 特征值
- Column vector 列向量
- Subspace 子空间
- Projection matrix 投影矩阵
参考资料
- Gilbert Strang, "Linear Algebra and Its Applications," Chap. 3, 5.
- David C. Lay, "Linear Algebra and Its Applications," Chap. 6.