東京大学 新領域創成科学研究科 メディカル情報生命専攻 2015年8月実施 問題8
Author
Description
Answer the following questions about linear algebra.
(1)
Compute the inverse matrix of the following matrix,
(2)
Consider data points
where
A: Compute the variance-covariance matrix
for the following data points,
B: Compute all eigenvalues and eigenvectors of the variance-covariance matrix.
(3)
Prove that, if the eigenvalues of a regular matrix A are
回答以下关于线性代数的问题。
(1)
计算以下矩阵的逆矩阵,
(2)
考虑数据点
其中
A: 计算方差-协方差矩阵
对于以下数据点,
B: 计算方差-协方差矩阵的所有特征值和特征向量。
(3)
证明,如果一个正规矩阵 A 的特征值是
Kai
(1)
To find the inverse of the matrix
we use the formula for the inverse of a
where
For our matrix,
First, compute the determinant:
Then, the inverse is
(2)
A: Variance-Covariance Matrix
Given data points
Next, we compute the variances and covariances:
Thus, the variance-covariance matrix is:
B: Eigenvalues and Eigenvectors
To find the eigenvalues
For our matrix
the determinant is:
Solving for
To find the eigenvectors corresponding to the eigenvalues
For
The equation
This gives us the system of equations:
From the first equation, we obtain
For
The equation
This gives us the system of equations:
From the first equation, we obtain
Thus, the eigenvectors corresponding to the eigenvalues
(3)
Let
Thus, the eigenvalues of
Knowledge
矩阵逆 方差协方差矩阵 特征值和特征向量
解题技巧和信息
- 计算逆矩阵时,确保熟记
矩阵的逆矩阵公式。 - 计算方差-协方差矩阵时,需准确计算均值、方差和协方差。
- 找特征值和特征向量时,熟悉特征值方程和特征向量的计算方法。
- 证明部分注意利用特征值和特征向量的定义和性质。
重点词汇
- Inverse matrix: 逆矩阵
- Variance-Covariance matrix: 方差-协方差矩阵
- Eigenvalue: 特征值
- Eigenvector: 特征向量
参考资料
- Gilbert Strang, Linear Algebra and Its Applications, Chapter 3.
- Axler, Sheldon, Linear Algebra Done Right, Chapter 5.