京都大学 情報学研究科 通信情報システム専攻 2024年2月実施 専門基礎A [A-1]
Author
祭音Myyura
Description
(1)
Find the limit
(2)
Evaluate the integral
(3)
Given the matrix:
(i) Find the eigenvalues and corresponding eigenvectors of
(ii) Using the eigenvalues and eigenvectors from (i), find
(iii) If the eigenvalues are the same, find
Kai
(1)
We know the Maclaurin series for
Thus,
As
(2)
We express
The integral in the
We integrate with respect to
Evaluating the final integral:
(3)
(i)
The characteristic equation is:
The determinant is:
Thus, the eigenvalues are
The corresponding eigenvectors are:
- For
, the eigenvector is . - For
, the eigenvector is .
(ii)
If
The inverse of
(iii)
If