京都大学 情報学研究科 数理工学専攻 2023年8月実施 常微分方程式
Author
Casablanca
Description
日本語版
を の多項式として次の微分方程式を考える.
をある自然数として が解であるものとする.このとき,以下の問いに答えよ.
(i) を定めよ.
(ii) を を用いて表わせ.
(iii) 式 (1) は と線形独立な有理関数解をもたないことを示せ.
English Version
Let be polynomials of and consider the differential equation
Assume that is a solution, where is a positive integer. Answer the following
questions.
(i) Determine .
(ii) Express in terms of .
(iii) Show that Eq. (1) has no rational function solution that is linearly independent of .
Kai
(i)
if , plug in,
thus
since , are both polynomials of t, has no constant term.
Thus , which is in conflict with .
Therefore
(ii)
(iii)
Let , we have
and obtain:
Let
since is a rational function, we can easily see that is a rational function and is a rational function.
Let ,
if , the times of is greater than the times of .
Thus , , , is the only ration function solution.